Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

3.9 readn, writen, and readline Functions

Stream sockets (e.g., TCP sockets) exhibit a behavior with the read and write functions that differs from normal file I/O. A read or write on a stream socket might input or output fewer bytes than requested, but this is not an error condition. The reason is that buffer limits might be reached for the socket in the kernel. All that is required to input or output the remaining bytes is for the caller to invoke the read or write function again. Some versions of Unix also exhibit this behavior when writing more than 4,096 bytes to a pipe. This scenario is always a possibility on a stream socket with read, but is normally seen with write only if the socket is nonblocking. Nevertheless, we always call our writen function instead of write, in case the implementation returns a short count.

We provide the following three functions that we use whenever we read from or write to a stream socket:

#include "unp.h"

ssize_t readn(int filedes, void *buff, size_t nbytes);

ssize_t writen(int filedes, const void *buff, size_t nbytes);

ssize_t readline(int filedes, void *buff, size_t maxlen);

All return: number of bytes read or written, 鈥? on error

Figure 3.15 shows the readn function, Figure 3.16 shows the writen function, and Figure 3.17 shows the readline function.

Figure 3.15 readn function: Read n bytes from a descriptor.

lib/readn.c

 1 #include     "unp.h"

 2 ssize_t                         /* Read "n" bytes from a descriptor. */
 3 readn(int fd, void *vptr, size_t n)
 4 {
 5     size_t  nleft;
 6     ssize_t nread;
 7     char   *ptr;

 8     ptr = vptr;
 9     nleft = n;
10     while (nleft > 0) {
11         if ( (nread = read(fd, ptr, nleft)) < 0) {
12             if (errno == EINTR)
13                 nread = 0;      /* and call read() again */
14             else
15                 return (-1);
16         } else if (nread == 0)
17             break;              /* EOF */

18         nleft -= nread;
19         ptr += nread;
20     }
21     return (n - nleft);         /* return >= 0 */
22 }
Figure 3.16 writen function: Write n bytes to a descriptor.

lib/writen.c

 1 #include    "unp.h"

 2 ssize_t                         /* Write "n" bytes to a descriptor. */
 3 writen(int fd, const void *vptr, size_t n)
 4 {
 5     size_t nleft;
 6     ssize_t nwritten;
 7     const char *ptr;

 8     ptr = vptr;
 9     nleft = n;
10     while (nleft > 0) {
11         if ( (nwritten = write(fd, ptr, nleft)) <= 0) {
12             if (nwritten < 0 && errno == EINTR)
13                 nwritten = 0;   /* and call write() again */
14             else
15                 return (-1);    /* error */
16          }

17          nleft -= nwritten;
18          ptr += nwritten;
19     }
20     return (n);
21 }
Figure 3.17 readline function: Read a text line from a descriptor, one byte at a time.

test/readline1.c

 1 #include     "unp.h"

 2 /* PAINFULLY SLOW VERSION -- example only */
 3 ssize_t
 4 readline(int fd, void *vptr, size_t maxlen)
 5 {
 6     ssize_t n, rc;
 7     char    c, *ptr;

 8     ptr = vptr;
 9     for (n = 1; n < maxlen; n++) {
10       again:
11         if ( (rc = read(fd, &c, 1)) == 1) {
12             *ptr++ = c;
13             if (c == '\n')
14                 break;          /* newline is stored, like fgets() */
15         } else if (rc == 0) {
16             *ptr = 0;
17             return (n - 1);     /* EOF, n - 1 bytes were read */
18         } else {
19             if (errno == EINTR)
20                 goto again;
21             return (-1);        /* error, errno set by read() */
22         }
23     }

24     *ptr = 0;                   /* null terminate like fgets() */
25     return (n);
26 }

Our three functions look for the error EINTR (the system call was interrupted by a caught signal, which we will discuss in more detail in Section 5.9) and continue reading or writing if the error occurs. We handle the error here, instead of forcing the caller to call readn or writen again, since the purpose of these three functions is to prevent the caller from having to handle a short count.

In Section 14.3, we will mention that the MSG_WAITALL flag can be used with the recv function to replace the need for a separate readn function.

Note that our readline function calls the system's read function once for every byte of data. This is very inefficient, and why we've commented the code to state it is "PAINFULLY SLOW." When faced with the desire to read lines from a socket, it is quite tempting to turn to the standard I/O library (referred to as "stdio"). We will discuss this approach at length in Section 14.8, but it can be a dangerous path. The same stdio buffering that solves this performance problem creates numerous logistical problems that can lead to well-hidden bugs in your application. The reason is that the state of the stdio buffers is not exposed. To explain this further, consider a line-based protocol between a client and a server, where several clients and servers using that protocol may be implemented over time (really quite common; for example, there are many Web browsers and Web servers independently written to the HTTP specification). Good "defensive programming" techniques require these programs to not only expect their counterparts to follow the network protocol, but to check for unexpected network traffic as well. Such protocol violations should be reported as errors so that bugs are noticed and fixed (and malicious attempts are detected as well), and also so that network applications can recover from problem traffic and continue working if possible. Using stdio to buffer data for performance flies in the face of these goals since the application has no way to tell if unexpected data is being held in the stdio buffers at any given time.

There are many line-based network protocols such as SMTP, HTTP, the FTP control connection protocol, and finger. So, the desire to operate on lines comes up again and again. But our advice is to think in terms of buffers and not lines. Write your code to read buffers of data, and if a line is expected, check the buffer to see if it contains that line.

Figure 3.18 shows a faster version of the readline function, which uses its own buffering rather than stdio buffering. Most importantly, the state of readline's internal buffer is exposed, so callers have visibility into exactly what has been received. Even with this feature, readline can be problematic, as we'll see in Section 6.3. System functions like select still won't know about readline's internal buffer, so a carelessly written program could easily find itself waiting in select for data already received and stored in readline's buffers. For that matter, mixing readn and readline calls will not work as expected unless readn is modified to check the internal buffer as well.

Figure 3.18 Better version of readline function.

lib/readline.c

 1 #include    "unp.h"

 2 static int read_cnt;
 3 static char *read_ptr;
 4 static char read_buf[MAXLINE];

 5 static ssize_t
 6 my_read(int fd, char *ptr)
 7 {

 8     if (read_cnt <= 0) {
 9       again:
10         if ( (read_cnt = read(fd, read_buf, sizeof(read_buf))) < 0) {
11             if (errno == EINTR)
12                 goto again;
13             return (-1);
14         } else if (read_cnt == 0)
15             return (0);
16         read_ptr = read_buf;
17     }

18     read_cnt--;
19     *ptr = *read_ptr++;
20     return (1);
21 }
22 ssize_t
23 readline(int fd, void *vptr, size_t maxlen)
24 {
25     ssize_t n, rc;
26     char    c, *ptr;

27     ptr = vptr;
28     for (n = 1; n < maxlen; n++) {
29         if ( (rc = my_read(fd, &c)) == 1) {
30             *ptr++ = c;
31             if (c  == '\n')
32                 break;          /* newline is stored, like fgets() */
33         } else if (rc == 0) {
34             *ptr = 0;
35             return (n - 1);     /* EOF, n - 1 bytes were read */
36         } else
37             return (-1);        /* error, errno set by read() */
38     }

39     *ptr  = 0;                  /* null terminate like fgets() */
40     return (n);
41 }

42 ssize_t
43 readlinebuf(void **vptrptr)
44 {
45     if (read_cnt)
46         *vptrptr = read_ptr;
47     return (read_cnt);
48 }

2鈥?1 The internal function my_read reads up to MAXLINE characters at a time and then returns them, one at a time.

29 The only change to the readline function itself is to call my_read instead of read.

42鈥?8 A new function, readlinebuf, exposes the internal buffer state so that callers can check and see if more data was received beyond a single line.

Unfortunately, by using static variables in readline.c to maintain the state information across successive calls, the functions are not re-entrant or thread-safe. We will discuss this in Sections 11.18 and 26.5. We will develop a thread-safe version using thread-specific data in Figure 26.11.

[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)