Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

13.4 daemon_init Function

Figure 13.4 shows a function named daemon_init that we can call (normally from a server) to daemonize the process. This function should be suitable for use on all variants of Unix, but some offer a C library function called daemon that provides similar features. BSD offers the daemon function, as does Linux.

Figure 13.4 daemon_init function: daemonizes the process.

daemon_init.c

 1 #include    "unp.h"
 2 #include    <syslog.h>

 3 #define MAXFD   64

 4 extern int daemon_proc;         /* defined in error.c */

 5 int
 6 daemon_init(const char *pname, int facility)
 7 {
 8     int     i;
 9     pid_t     pid;

10     if ( (pid = Fork()) < 0)
11         return (-1);
12     else if (pid)
13         _exit(0);               /* parent terminates */

14     /* child 1 continues... */

15     if (setsid() < 0)           /* become session leader */
16         return (-1);

17     Signal(SIGHUP, SIG_IGN);
18     if ( (pid = Fork()) < 0)
19         return (-1);
20     else if (pid)
21         _exit(0);               /* child 1 terminates */

22     /* child 2 continues... */

23     daemon_proc = 1;            /* for err_XXX() functions */

24     chdir("/");                 /* change working directory */

25     /* close off file descriptors */
26     for (i = 0; i < MAXFD; i++)
27         close(i);

28     /* redirect stdin, stdout, and stderr to /dev/null */
29     open("/dev/null", O_RDONLY);
30     open("/dev/null", O_RDWR);
31     open("/dev/null", O_RDWR);

32     openlog(pname, LOG_PID, facility);

33     return (0);                 /* success */
34 }

fork

10鈥?3 We first call fork and then the parent terminates, and the child continues. If the process was started as a shell command in the foreground, when the parent terminates, the shell thinks the command is done. This automatically runs the child process in the background. Also, the child inherits the process group ID from the parent but gets its own process ID. This guarantees that the child is not a process group leader, which is required for the next call to setsid.

setsid

15鈥?6 setsid is a POSIX function that creates a new session. (Chapter 9 of APUE talks about process relationships and sessions in detail.) The process becomes the session leader of the new session, becomes the process group leader of a new process group, and has no controlling terminal.

Ignore SIGHUP and Fork Again

17鈥?1 We ignore SIGHUP and call fork again. When this function returns, the parent is really the first child and it terminates, leaving the second child running. The purpose of this second fork is to guarantee that the daemon cannot automatically acquire a controlling terminal should it open a terminal device in the future. When a session leader without a controlling terminal opens a terminal device (that is not currently some other session's controlling terminal), the terminal becomes the controlling terminal of the session leader. But by calling fork a second time, we guarantee that the second child is no longer a session leader, so it cannot acquire a controlling terminal. We must ignore SIGHUP because when the session leader terminates (the first child), all processes in the session (our second child) receive the SIGHUP signal.

Set Flag for Error Functions

23 We set the global daemon_proc to nonzero. This external is defined by our err_XXX functions (Section D.3), and when its value is nonzero, this tells them to call syslog instead of doing an fprintf to standard error. This saves us from having to go through all our code and call one of our error functions if the server is not being run as a daemon (i.e., when we are testing the server), but call syslog if it is being run as a daemon.

Change Working Directory

24 We change the working directory to the root directory, although some daemons might have a reason to change to some other directory. For example, a printer daemon might change to the printer's spool directory, where it does all its work. Should the daemon ever generate a core file, that file is generated in the current working directory. Another reason to change the working directory is that the daemon could have been started in any filesystem, and if it remains there, that filesystem cannot be unmounted (at least not without using some potentially destructive, forceful measures).

Close any open descriptors

25鈥?7 We close any open descriptors that are inherited from the process that executed the daemon (normally a shell). The problem is determining the highest descriptor in use: There is no Unix function that provides this value. There are ways to determine the maximum number of descriptors that the process can open, but even this gets complicated (see p. 43 of APUE) because the limit can be infinite. Our solution is to close the first 64 descriptors, even though most of these are probably not open.

Solaris provides a function called closefrom for use by daemons to solve this problem.

Redirect stdin, stdout, and stderr to /dev/null

29鈥?1 We open/dev/null for standard input, standard output, and standard error. This guarantees that these common descriptors are open, and a read from any of these descriptors returns 0 (EOF), and the kernel just discards anything written to them. The reason for opening these descriptors is so that any library function called by the daemon that assumes it can read from standard input or write to either standard output or standard error will not fail. Such a failure is potentially dangerous. If the daemon ends up opening a socket to a client, that socket descriptor ends up as stdout or stderr and some erroneous call to something like perror then sends unexpected data to a client.

Use syslogd for Errors

32 Openlog is called. The first argument is from the caller and is normally the name of the program (e.g., argv[0]). We specify that the process ID should be added to each log message. The facility is also specified by the caller, as one of the values from Figure 13.2 or 0 if the default of LOG_USER is acceptable.

We note that since a daemon runs without a controlling terminal, it should never receive the SIGHUP signal from the kernel. Therefore, many daemons use this signal as a notification from the administrator that the daemon's configuration file has changed, and the daemon should reread the file. Two other signals that a daemon should never receive are SIGINT and SIGWINCH, so daemons can safely use these signals as another way for administrators to indicate some change that the daemon should react to.

Example: Daytime Server as a Daemon

Figure 13.5 is a modification of our protocol-independent daytime server from Figure 11.14 that calls our daemon_init function to run as daemons.

There are only two changes: We call our daemon_init function as soon as the program starts, and we call our err_msg function, instead of printf, to print the client's IP address and port. Indeed, if we want our programs to be able to run as a daemon, we must avoid calling the printf and fprintf functions and use our err_msg function instead.

Note how we check argc and issue the appropriate usage message before calling daemon_init. This allows the user starting the daemon to get immediate feedback if the command has the incorrect number of arguments. After calling daemon_init, all subsequent error messages go to syslog.

If we run this program on our Linux host linux and then check the /var/log/messages file (where we send all LOG_USER messages) after connecting from the same machine (e.g., localhost), we have


Jun 10 09:54:37 linux daytimetcpsrv2[24288]:
connection from 127.0.0.1.55862

(We have wrapped the one long line.) The date, time, and hostname are prefixed automatically by the syslogd daemon.

Figure 13.5 Protocol-independent daytime server that runs as a daemon.

inetd/daytimetcpsrv2.c

 1 #include     "unp.h"
 2 #include     <time.h>

 3 int
 4 main(int argc, char **argv)
 5 {
 6     int     listenfd, connfd;
 7     socklen_t addrlen, len;
 8     struct sockaddr *cliaddr;
 9     char     buff[MAXLINE];
10     time_t ticks;

11     if (argc < 2 || argc > 3)
12         err_quit("usage: daytimetcpsrv2 [ <host> ] <service or port>");

13     daemon_init(argv[0], 0);

14     if (argc == 2)
15         listenfd = Tcp_listen(NULL, argv[1], &addrlen);
16     else
17         listenfd = Tcp_listen(argv[1], argv[2], &addrlen);

18     cliaddr = Malloc(addrlen);

19     for ( ; ; ) {
20         len = addrlen;
21         connfd = Accept(listenfd, cliaddr, &len);
22         err_msg("connection from %s", Sock_ntop(cliaddr, len));

23         ticks = time(NULL);
24         snprintf(buff, sizeof(buff), "%.24s/r/n", ctime(&ticks));
25         Write(connfd, buff, strlen(buff));

26         Close(connfd);
27     }
28 }
[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)