Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

14.9 Advanced Polling

Earlier in this chapter, we discussed several ways to set a time limit on a socket operation. Many operating systems now offer another alternative, and provide the features of select and poll we described in Chapter 6 as well. Since none of these methods have been adopted by POSIX yet, and each implementation seems to be slightly different, code that uses these mechanisms should be considered nonportable. We'll describe two mechanisms here; other available mechanisms are similar.

/dev/poll Interface

Solaris provides a special file called /dev/poll, which provides a more scalable way to poll large numbers of file descriptors. The problem with select and poll is that the file descriptors of interest must be passed in with each call. The poll device maintains state between calls so that a program can set up the list of descriptors to poll and then loop, waiting for events, without setting up the list again each time around the loop.

After opening /dev/poll, the polling program must initialize an array of pollfd structures (the same structure used by the poll function, but the revents field is unused in this case). The array is then passed to the kernel by calling write to write the structured directly to the /dev/poll device. The program then uses an ioctl call, DO_POLL, to block, waiting for events. The following structure is passed into the ioctl call:


struct dvpoll {
    struct pollfd* dp_fds;
    int            dp_nfds;
    int            dp_timeout;
}

The field dp_fds points to a buffer that is used to hold an array of pollfd structures returned from the ioctl call. The field dp_nfds field specifies the size of the buffer. The ioctl call blocks until there are interesting events on any of the polled file descriptors, or until dp_timeout milliseconds have passed. Using a value of zero for dp_timeout will cause the ioctl to return immediately, which provides a nonblocking way to use this interface. Passing in -1 for the timeout indicates that no timeout is desired.

We modify our str_cli function, which used select in Figure 6.13, to use /dev/poll in Figure 14.15.

Figure 14.15 str_cli function using /dev/poll.

advio/str_cli_poll03.c

 1 #include    "unp.h"
 2 #include    <sys/devpoll.h>

 3 void
 4 str_cli(FILE *fp, int sockfd)
 5 {
 6     int     stdineof;
 7     char    buf[MAXLINE];
 8     int     n;
 9     int     wfd;
10     struct pollfd pollfd[2];
11     struct dvpoll dopoll;
12     int     i;
13     int     result;

14     wfd = Open("/dev/poll", O_RDWR, 0);

15     pollfd[0].fd = fileno(fp);
16     pollfd[0].events = POLLIN;
17     pollfd[0].revents = 0;

18     pollfd[1].fd = sockfd;
19     pollfd[1].events = POLLIN;
20     pollfd[1].revents = 0;

21     Write(wfd, pollfd, sizeof(struct pollfd) * 2);

22     stdineof = 0;
23     for ( ; ; ) {
24         /* block until /dev/poll says something is ready */
25         dopoll.dp_timeout = -1;
26         dopoll.dp_nfds = 2;
27         dopoll.dp_fds = pollfd;
28         result = Ioctl(wfd, DP_POLL, &dopoll);

29         /* loop through ready file descriptors */
30         for (i = 0; i < result; i++) {
31             if (dopoll.dp_fds[i].fd == sockfd) {
32                 /* socket is readable */
33                 if ( (n = Read(sockfd, buf, MAXLINE)) == 0) {
34                     if (stdineof == 1)
35                         return; /* normal termination */
36                     else
37                         err_quit("str_cli: server terminated prematurely");
38                 }

39                 Write(fileno(stdout), buf, n);
40             } else {
41                 /* input is readable */
42                 if ( (n = Read(fileno(fp), buf, MAXLINE)) == 0) {
43                     stdineof = 1;
44                     Shutdown(sockfd, SHUT_WR); /* send FIN */
45                     continue;
46                 }

47                 Writen(sockfd, buf, n);
48             }
49         }
50     }
51 }
List descriptors for /dev/poll

14鈥?1 After filling in an array of pollfd structures, we pass them to /dev/poll. Our example only requires two file descriptors, so we use a static array of structures. In practice, programs that use /dev/poll need to monitor hundreds or even thousands of file descriptors, so the array would likely be allocated dynamically.

Wait for work

24鈥?8 Rather than calling select, this program blocks, waiting for work, in the ioctl call. The return is the number of file descriptors that are ready.

Loop through descriptors

30鈥?9 The code in our example is simplified since we know the ready file descriptors will be sockfd, the input file descriptor, or both. In a large-scale program, this loop would be more complex, perhaps even dispatching the work to threads.

kqueue Interface

FreeBSD introduced the kqueue interface in FreeBSD version 4.1. This interface allows a process to register an "event filter" that describes the kqueue events it is interested in. Events include file I/O and timeouts like select, but also adds asynchronous I/O, file modification notification (e.g., notification when a file is removed or modified), process tracking (e.g., notification when a given process exits or calls fork), and signal handling. The kqueue interface includes the following two functions and macro:

#include <sys/types.h>

#include <sys/event.h>

#include <sys/time.h>

int kqueue(void);

int kevent(int kq, const struct kevent *changelist, int nchanges, struct kevent *eventlist, int nevents, const struct timespec *timeout) ;

void EV_SET(struct kevent *kev, uintptr_t ident, short filter, u_short flags, u_int fflags, intptr_t data, void *udata);

The kqueue function returns a new kqueue descriptor, which can be used with future calls to kevent. The kevent function is used to both register events of interest and determine if any events have occurred. The changelist and nchanges parameters describe the changes to be made to the events of interest, or are NULL and 0, respectively, if no changes are to be made. If nchanges is nonzero, each event filter change requested in the changelist array is performed. Any filters whose conditions have triggered, including those that may have just been added in the changelist, are returned through the eventlist parameter, which points to an array of nevents struct kevents. The kevent function returns the number of events that are returned, or zero if a timeout has occurred. The timeout argument holds the timeout, which is handled just like select: NULL to block, a nonzero timespec to specify an explicit timeout, and a zero timespec to perform a nonblocking check for events. Note that the timeout parameter is a struct timespec, which is different from select's struct timeval in that it has nanosecond instead of microsecond resolution.

The kevent structure is defined by including the <sys/event.h> header.


struct kevent {
  uintptr_t  ident;      /* identifier (e.g., file descriptor) */
  short      filter;     /* filter type (e.g., EVFILT_READ) */
  u_short    flags;      /* action flags (e.g., EV_ADD) */
  u_int      fflags;     /* filter-specific flags */
  intptr_t   data;       /* filter-specific data */
  void      *udata;      /* opaque user data */
};

The actions for changing a filter and the flag return values are shown in Figure 14.16.

Figure 14.16. flags for kevent operations.

graphics/14fig16.gif

Filter types are shown in Figure 14.17.

Figure 14.17. filters for kevent operations.

graphics/14fig17.gif

We modify our str_cli function, which used select in Figure 6.13, to use kqueue in Figure 14.18.

Determine if file pointer points to a file

10鈥?1 The behavior of kqueue on EOF is different depending on whether the file descriptor is associated with a file, a pipe, or a terminal, so we use the fstat call to determine if it is a file. We will use this determination later.

Set up kevent structures for kqueue

12鈥?3 We use the EV_SET macro to set up two kevent structures; both specify a read filter (EVFILT_READ) and request to add this event to the filter (EV_ADD).

Create kqueue and add filters

14鈥?6 We call kqueue to get a kqueue descriptor, set the timeout to zero to allow a nonblocking call to kevent, and call kevent with our array of kevents as the change request.

Loop forever, blocking in kevent

17鈥?8 We loop forever, blocking in kevent. We pass a NULL change list, since we are only interested in the events we have already registered, and a NULL timeout to block forever.

Loop through returned events

19 We check each event that was returned and process it individually.

Figure 14.18 str_cli function using kqueue.

advio/str_cli_kqueue04.c

 1 #include    "unp.h"

 2 void
 3 str_cli(FILE *fp, int sockfd)
 4 {
 5     int     kq, i, n, nev, stdineof = 0, isfile;
 6     char    buf[MAXLINE];
 7     struct kevent kev[2];
 8     struct timespec ts;
 9     struct stat st;

10     isfile = ((fstat(fileno(fp), &st) == 0) &&
11               (st.st_mode & S_IFMT) == S_IFREG);

12     EV_SET(&kev[0], fileno(fp), EVFILT_READ, EV_ADD, 0, 0, NULL);
13     EV_SET(&kev[1], sockfd, EVFILT_READ, EV_ADD, 0, 0, NULL);

14     kq = Kqueue();
15     ts.tv_sec = ts.tv_nsec = 0;
16     Kevent(kq, kev, 2, NULL, 0, &ts);

17     for ( ; ; ) {
18         nev = Kevent(kq, NULL, 0, kev, 2, NULL);

19         for (i = 0; i < nev; i++) {
20             if (kev[i].ident == sockfd) {     /* socket is readable */
21                 if ( (n = Read(sockfd, buf, MAXLINE)) == 0) {
22                     if (stdineof == 1)
23                         return; /* normal termination */
24                     else
25                         err_quit("str_cli: server terminated prematurely");
26                 }

27                 Write(fileno(stdout), buf, n);
28             }

29             if (kev[i].ident == fileno(fp)) {  /* input is readable */
30                 n = Read(fileno(fp), buf, MAXLINE);
31                 if (n > 0)
32                     Writen(sockfd, buf, n);

33                 if (n == 0 || (isfile && n == kev[i].data)) {
34                     stdineof = 1;
35                     Shutdown(sockfd, SHUT_WR);  /* send FIN */
36                     kev[i].flags = EV_DELETE;
37                     Kevent(kq, &kev[i], 1, NULL, 0, &ts);    /* remove kevent */
38                     continue;
39                 }
40             }
41         }
42     }
43 }
Socket is readable

20鈥?8 This code is exactly the same as in Figure 6.13.

Input is readable

29鈥?0 This code is similar to Figure 6.13, but is structured slightly differently to handle how kqueue reports an EOF. On pipes and terminals, kqueue returns a readable indication that an EOF is pending, just like select. However, on files, kqueue simply returns the number of bytes left in the file in the data member of the struct kevent and assumes that the application will know when it reaches the end. Therefore, we restructure the loop to write the data to the network if a nonzero number of bytes were read. Next, we check our modified EOF condition: if we have read zero bytes or if it's a file and we've read as many bytes as are left in the file. The other modification from Figure 6.13 is that instead of using FD_CLR to remove the input descriptor from the file set, we set the flags to EV_DELETE and call kevent to remove this event from the filter in the kernel.

Suggestions

Care should be taken with these newly evolved interfaces to read the documentation specific to the OS release. These interfaces often change in subtle ways between releases while the vendors work through the details of how they should work.

While writing nonportable code is, in general, something to avoid, it is quite common to use any means possible to optimize a very heavily used network application for the specific server it runs on.

[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)