Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

18.5 get_ifi_info Function (Revisited)

We now return to the example from Section 17.6: returning all the interfaces that are up as a linked list of ifi_info structures (Figure 17.5). The prifinfo program remains the same (Figure 17.6), but we now show a version of the get_ifi_info function that uses sysctl instead of the SIOCGIFCONF ioctl that was used in Figure 17.7.

We first show the function net_rt_iflist in Figure 18.15. This function calls sysctl with the NET_RT_IFLIST command to return the interface list for a specified address family.

Figure 18.15 Call sysctl to return interface list.

libroute/net_rt_iflist.c

 1 #include    "unproute.h"

 2 char *
 3 net_rt_iflist(int family, int flags, size_t *lenp)
 4 {
 5     int     mib[6];
 6     char   *buf;

 7     mib[0] = CTL_NET;
 8     mib[1] = AF_ROUTE;
 9     mib[2] = 0;
10     mib[3] = family;             /* only addresses of this family */
11     mib[4] = NET_RT_IFLIST;
12     mib[5] = flags;              /* interface index or 0 */
13     if (sysctl (mib, 6, NULL, lenp, NULL, 0) < 0)
14         return (NULL);

15     if ( (buf = malloc(*lenp)) == NULL)
16         return (NULL);
17     if (sysctl (mib, 6, buf, lenp, NULL, 0) < 0) {
18         free(buf);
19         return (NULL);
20     }

21     return (buf);
22 }

7鈥?4 The array mib is initialized as shown in Figure 18.12 to return the interface list and all configured addresses of the specified family. sysctl is then called twice. In the first call, the third argument is null, which returns the buffer size required to hold all the interface information in the variable pointed to by lenp.

15鈥?1 Space is then allocated for the buffer and sysctl is called again, this time with a non-null third argument. This time, the variable pointed to by lenp will return with the amount of information stored in the buffer, and this variable is allocated by the caller. A pointer to the buffer is also returned to the caller.

Since the size of the routing table or the number of interfaces can change between the two calls to sysctl, the value returned by the first call contains a 10% fudge factor (pp. 639鈥?40 of TCPv2).

Figure 18.16 shows the first half of the get_ifi_info function.

Figure 18.16 get_ifi_info function, first half.

route/get_ifi_info.c

 3 struct ifi_info *
 4 get_ifi_info(int family, int doaliases)
 5 {
 6     int     flags;
 7     char   *buf, *next, *lim;
 8     size_t  len;
 9     struct if_msghdr *ifm;
10     struct ifa_msghdr *ifam;
11     struct sockaddr *sa, *rti_info [RTAX_MAX];
12     struct sockaddr_dl *sdl;
13     struct ifi_info *ifi, *ifisave, *ifihead, **ifipnext;

14     buf = Net_rt_iflist(family, 0, &len);

15     ifihead = NULL;
16     ifipnext = &ifihead;

17     lim = buf + len;
18     for (next = buf; next < lim; next += ifm->ifm_msglen) {
19         ifm = (struct if_msghdr *) next;
20         if (ifm->ifm_type == RTM_IFINFO) {
21             if (((flags = ifm->ifm_flags) & IFF_UP) == 0)
22                 continue;  /* ignore if interface not up */
 
23             sa = (struct sockaddr *) (ifm + 1);
24             get_rtaddrs (ifm->ifm_addrs, sa, rti_info);
25             if ( (sa = rti_info [RTAX_IFP]) != NULL) {
26                 ifi = Calloc (1, sizeof (struct ifi_info));
27                 *ifipnext = ifi;     /* prev points to this new one */
28                 ifipnext = &ifi->ifi_next;     /* ptr to next one goes here */

29                 ifi->ifi_flags = flags;
30                 if (sa->sa_family == AF_LINK) {
31                     sdl = (struct sockaddr_dl *) sa;
32                     ifi->ifi_index = sdl->sdl_index;
33                     if (sdl->sdl_nlen > 0)
34                         snprintf (ifi->ifi_name, IFI_NAME, "%*s",
35                                   sdl->sdl_nlen, &sdl->sdl_data[0]);
36                     else
37                         snprintf(ifi->ifi_name, IFI_NAME, "index %d",
38                                  sdl->sdl_index);
 
3 9                    if ( (ifi->ifi_hlen = sdl->sdl_alen) > 0)
40                         memcpy (ifi->ifi_haddr, LLADDR (sdl),
41                                 min (IFI_HADDR, sdl->sdl_alen));
42                 }
43         }

6鈥?4 We declare the local variables and then call our net_rt_iflist function.

17鈥?9 The for loop steps through each routing message in the buffer filled in by sysctl. We assume that the message is an if_msghdr structure and look at the ifm_type field. (Recall that the first three members of all three structures are identical, so it doesn't matter which of the three structures we use to look at the type member.)

Check if interface is up

20鈥?2 An RTM_IFINFO structure is returned for each interface. If the interface is not up, it is ignored.

Determine which socket address structures are present

23鈥?4 sa points to the first socket address structure following the if_msghdr structure. Our get_rtaddrs function initializes the rti_info array, depending on which socket address structures are present.

Handle interface name

25鈥?3 If the socket address structure with the interface name is present, an ifi_info structure is allocated and the interface flags are stored. The expected family of this socket address structure is AF_LINK, indicating a datalink socket address structure. We store the interface index into the ifi_index member. If the sdl_nlen member is nonzero, then the interface name is copied into the ifi_info structure. Otherwise, a string containing the interface index is stored as the name. If the sdl_alen member is nonzero, then the hardware address (e.g., the Ethernet address) is copied into the ifi_info structure and its length is also returned as ifi_hlen.

Figure 18.17 shows the second half of our get_ifi_info function, which returns the IP addresses for the interface.

Return IP addresses

44鈥?5 An RTM_NEWADDR message is returned by sysctl for each address associated with the interface: the primary address and all aliases. If we have already filled in the IP address for this interface, then we are dealing with an alias. In that case, if the caller wants the alias address, we must allocate memory for another ifi_info structure, copy the fields that have been filled in, and then fill in the addresses that have been returned.

Return broadcast and destination addresses

66鈥?5 If the interface supports broadcasting, the broadcast address is returned, and if the interface is a point-to-point interface, the destination address is returned.

Figure 18.17 get_ifi_info function, second half.

route/get_ifi_info.c

44     } else if (ifm->ifm_type == RTM_NEWADDR) {
45         if (ifi->ifi_addr) {     /* already have an IP addr for i/f */
46             if (doaliases == 0)
47                 continue;

48                 /* we have a new IP addr for existing interface */
49             ifisave = ifi;
50             ifi = Calloc(1, sizeof (struct ifi_info));
51             *ifipnext = ifi;     /* prev points to this new one */
52             ifipnext = &ifi->ifi_next;     /* ptr to next one goes here */
53             ifi->ifi_flags = ifisave->ifi_flags;
54             ifi->ifi_index = ifisave->ifi_index;
55             ifi->ifi_hlen = ifisave->ifi_hlen;
56             memcpy(ifi->ifi_name, ifisave->ifi_name, IFI_NAME);
57             memcpy(ifi->ifi_haddr, ifisave->ifi_haddr, IFI_HADDR);
58        }

59        ifam = (struct ifa_msghdr *) next;
60        sa = (struct sockaddr *) (ifam + 1);
61        get_rtaddrs(ifam->ifam_addrs, sa, rti_info);

62        if ( (sa = rti_info[RTAX_IFA]) != NULL) {
63            ifi->ifi_addr = Calloc(1, sa->sa_len);
64            memcpy(ifi->ifi_addr, sa, sa->sa_len);
65        }

66        if ((flags & IFF_BROADCAST) && (sa = rti_info[RTAX_BRD]) != NULL) {
67            ifi->ifi_brdaddr = Calloc (1, sa->sa_len);
68            memcpy(ifi->ifi_brdaddr, sa, sa->sa_len);
69        }

70       if ((flags & IFF_POINTOPOINT) &&
71           (sa = rti_info[RTAX_BRD]) != NULL) {
72           ifi->ifi_dstaddr = Calloc (1, sa->sa_len);
73           memcpy(ifi->ifi_dstaddr, sa, sa->sa_len);
74       }

75   } else
76       err_quit("unexpected message type %d", ifm->ifm_type);
77  }
78  /* "ifihead" points to the first structure in the linked list */
79  return (ifihead);     /* ptr to first structure in linked list */
80 }
[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)