Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

6.8 TCP Echo Server (Revisited)

We can revisit our TCP echo server from Sections 5.2 and 5.3 and rewrite the server as a single process that uses select to handle any number of clients, instead of forking one child per client. Before showing the code, let's look at the data structures that we will use to keep track of the clients. Figure 6.14 shows the state of the server before the first client has established a connection.

Figure 6.14. TCP server before first client has established a connection.

graphics/06fig14.gif

The server has a single listening descriptor, which we show as a bullet.

The server maintains only a read descriptor set, which we show in Figure 6.15. We assume that the server is started in the foreground, so descriptors 0, 1, and 2 are set to standard input, output, and error. Therefore, the first available descriptor for the listening socket is 3. We also show an array of integers named client that contains the connected socket descriptor for each client. All elements in this array are initialized to 鈥?.

Figure 6.15. Data structures for TCP server with just a listening socket.

graphics/06fig15.gif

The only nonzero entry in the descriptor set is the entry for the listening sockets and the first argument to select will be 4.

When the first client establishes a connection with our server, the listening descriptor becomes readable and our server calls accept. The new connected descriptor returned by accept will be 4, given the assumptions of this example. Figure 6.16 shows the connection from the client to the server.

Figure 6.16. TCP server after first client establishes connection.

graphics/06fig16.gif

From this point on, our server must remember the new connected socket in its client array, and the connected socket must be added to the descriptor set. These updated data structures are shown in Figure 6.17.

Figure 6.17. Data structures after first client connection is established.

graphics/06fig17.gif

Sometime later a second client establishes a connection and we have the scenario shown in Figure 6.18.

Figure 6.18. TCP server after second client connection is established.

graphics/06fig18.gif

The new connected socket (which we assume is 5) must be remembered, giving the data structures shown in Figure 6.19.

Figure 6.19. Data structures after second client connection is established.

graphics/06fig19.gif

Next, we assume the first client terminates its connection. The client TCP sends a FIN, which makes descriptor 4 in the server readable. When our server reads this connected socket, read returns 0. We then close this socket and update our data structures accordingly. The value of client [0] is set to 鈥? and descriptor 4 in the descriptor set is set to 0. This is shown in Figure 6.20. Notice that the value of maxfd does not change.

Figure 6.20. Data structures after first client terminates its connection.

graphics/06fig20.gif

In summary, as clients arrive, we record their connected socket descriptor in the first available entry in the client array (i.e., the first entry with a value of 鈥?). We must also add the connected socket to the read descriptor set. The variable maxi is the highest index in the client array that is currently in use and the variable maxfd (plus one) is the current value of the first argument to select. The only limit on the number of clients that this server can handle is the minimum of the two values FD_SETSIZE and the maximum number of descriptors allowed for this process by the kernel (which we talked about at the end of Section 6.3).

Figure 6.21 shows the first half of this version of the server.

Figure 6.21 TCP server using a single process and select: initialization.

tcpcliserv/tcpservselect01.c

 1 #include     "unp.h"

 2 int
 3 main(int argc, char **argv)
 4 {
 5     int     i, maxi, maxfd, listenfd, connfd, sockfd;
 6     int     nready, client[FD_SETSIZE];
 7     ssize_t n;
 8     fd_set  rset, allset;
 9     char    buf[MAXLINE];
10     socklen_t  clilen;
11     struct sockaddr_in cliaddr, servaddr;

12     listenfd = Socket(AF_INET, SOCK_STREAM, 0);

13     bzero(&servaddr, sizeof(servaddr));
14     servaddr.sin_family = AF_INET;
15     servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
16     servaddr.sin_port = htons(SERV_PORT);

17     Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

18     Listen(listenfd, LISTENQ);

19     maxfd = listenfd;            /* initialize */
20     maxi = -1;                   /* index into client[] array */
21     for (i = 0; i < FD_SETSIZE;  i++)
22         client[i] = -1;          /* -1 indicates available entry */
23     FD_ZERO(&allset);
24     FD_SET(listenfd, &allset);

Create listening socket and initialize for select

12鈥?4 The steps to create the listening socket are the same as seen earlier: socket, bind, and listen. We initialize our data structures assuming that the only descriptor that we will select on initially is the listening socket.

The last half of the function is shown in Figure 6.22

Figure 6.22 TCP server using a single process and select loop.

tcpcliserv/tcpservselect01.c

25       for ( ; ; ) {
26           rset = allset;          /* structure assignment */
27           nready = Select(maxfd + 1, &rset, NULL, NULL, NULL);

28           if (FD_ISSET(listenfd, &rset)) {       /* new client connection */
29               clilen = sizeof(cliaddr);
30               connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);

31               for (i = 0; i < FD_SETSIZE; i++)
32                   if (client[i] < 0) {
33                       client[i] = connfd; /* save descriptor */
34                       break;
35                   }
36               if (i == FD_SETSIZE)
37                   err_quit("too many clients");
38               FD_SET(connfd, &allset);       /* add new descriptor to set */
39               if (connfd > maxfd)
40                   maxfd = connfd; /* for select */
41               if (i > maxi)
42                   maxi = i;          /* max index in client[] array */

43               if (--nready <= 0)
44                   continue;          /* no more readable descriptors */
45          }
46          for (i = 0; i <= maxi; i++) {       /* check all clients for data */
47              if ( (sockfd = client[i]) < 0)
48                  continue;
49              if (FD_ISSET(sockfd, &rset)) {
50                  if ( (n = Read(sockfd, buf, MAXLINE)) == 0) {
51                          /* connection closed by client */
52                      Close(sockfd);
53                      FD_CLR(sockfd, &allset);
54                      client[i] = -1;
55                  } else
56                      Writen(sockfd, buf, n);

57                  if (--nready <= 0)
58                      break;         /* no more readable descriptors */
59              }
60          }
61      }
62  }

Block in select

26鈥?7 select waits for something to happen: either the establishment of a new client connection or the arrival of data, a FIN, or an RST on an existing connection.

accept new connections

28鈥?5 If the listening socket is readable, a new connection has been established. We call accept and update our data structures accordingly. We use the first unused entry in the client array to record the connected socket. The number of ready descriptors is decremented, and if it is 0, we can avoid the next for loop. This lets us use the return value from select to avoid checking descriptors that are not ready.

Check existing connections

46鈥?0 A test is made for each existing client connection as to whether or not its descriptor is in the descriptor set returned by select. If so, a line is read from the client and echoed back to the client. If the client closes the connection, read returns 0 and we update our data structures accordingly.

We never decrement the value of maxi, but we could check for this possibility each time a client closes its connection.

This server is more complicated than the one shown in Figures 5.2 and 5.3, but it avoids all the overhead of creating a new process for each client and it is a nice example of select. Nevertheless, in Section 16.6, we will describe a problem with this server that is easily fixed by making the listening socket nonblocking and then checking for, and ignoring, a few errors from accept.

Denial-of-Service Attacks

Unfortunately, there is a problem with the server that we just showed. Consider what happens if a malicious client connects to the server, sends one byte of data (other than a newline), and then goes to sleep. The server will call read, which will read the single byte of data from the client and then block in the next call to read, waiting for more data from this client. The server is then blocked ("hung" may be a better term) by this one client and will not service any other clients (either new client connections or existing clients' data) until the malicious client either sends a newline or terminates.

The basic concept here is that when a server is handling multiple clients, the server can never block in a function call related to a single client. Doing so can hang the server and deny service to all other clients. This is called a denial-of-service attack. It does something to the server that prevents it from servicing other legitimate clients. Possible solutions are to: (i) use nonblocking I/O (Chapter 16), (ii) have each client serviced by a separate thread of control (e.g., either spawn a process or a thread to service each client), or (iii) place a timeout on the I/O operations (Section 14.2).

[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)