Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

10.5 Exploring Head-of-Line Blocking

Our simple server provides a method to send text messages to any of a number of streams. A stream in SCTP is not a stream of bytes (as in TCP), but a sequence of messages that is ordered within the association. These sub-ordered streams are used to avoid the head-of-line blocking found in TCP.

Head-of-line blocking occurs when a TCP segment is lost and a subsequent TCP segment arrives out of order. That subsequent segment is held until the first TCP segment is retransmitted and arrives at the receiver. Delaying delivery of the subsequent segment assures that the receiving application sees all data in the order in which the sending application sent it. This delay to achieve complete ordering is quite useful, but it has a downside. Assume that semantically independent messages are being sent over a single TCP connection. For example, a server may send three different pictures for a Web browser to display. To make the pictures appear on the user's screen in parallel, a server sends a piece from the first picture, then a piece from the second picture, and finally a piece from the third picture. The server repeats this process until all three pictures are successfully transmitted to the browser. But what happens if a TCP packet holding a piece of the first picture is lost? The client will hold all data until that missing piece is retransmitted and arrives successfully, delaying all data for the second and third pictures, as well as data for the first picture. Figure 10.5 illustrates this problem.

Figure 10.5. Sending three pictures over one TCP connection.

graphics/10fig05.gif

Although this is not how HTTP works, several extensions, such as SCP [Spero 1996] and SMUX [Gettys and Nielsen 1998], have been proposed to permit this type of parallel functionality on top of TCP. These multiplexing protocols have been proposed to avoid the harmful behavior of multiple parallel TCP connections that do not share state [Touch 1997]. Although creating one TCP connection per picture (as HTTP clients normally do) avoids the head-of-line blocking problem, each connection has to discover the RTT and available bandwidth independently; a loss on one connection (a signal of congestion on the path) does not necessarily cause the other connections to slow down. This leads to lower aggregate utilization of congested networks.

This blocking is not really what the application would like to occur. Ideally, only later pieces of the first picture would be delayed while pieces of the second and third pictures that arrive in order would be delivered immediately to the user.

Head-of-line blocking can be minimized by SCTP's multistream feature. In Figure 10.6, we see the same three pictures being sent. This time, the server uses streams so that head-of-line blocking only occurs where it is desired, allowing delivery of the second and third pictures but holding the partially received first picture until in-order delivery is possible.

Figure 10.6. Sending three pictures over three SCTP streams.

graphics/10fig06.gif

We now complete our client code, including the missing function sctpstr_cli_echoall (Figure 10.7, p. 296), which we will use to demonstrate how SCTP minimizes head-of-line blocking. This function is similar to our previous sctpstr_cli function except the client no longer expects a stream number in brackets preceding each message. Instead, the function sends the user message to all SERV_MAX_SCTP_STRM streams. After sending the messages, the client waits for all the responses to arrive from the server. In running the code, we also pass an additional argument to the server so that the server responds on the same stream on which a message was received. This way, the user can better track the responses sent and their order of arrival.

Initialize data structures and wait for input

13鈥?5 As before, the client initializes the sri structure used to set up the stream it will be sending and receiving from. In addition, the client zeros out the data buffer from which it will collect user input. Then, the client enters the main loop, once again blocking on user input.

Pre-process message

16鈥?0 The client sets up the message size and then deletes the newline character that is at the end of the buffer (if any).

Send message to each stream

21鈥?6 The client sends the message using the sctp_sendmsg function, sending the whole buffer of SCTP_MAXLINE bytes. Before sending the message, it appends the string ".msg." and the stream number so that we can observe the order of the arriving messages. In this way, we can compare the arrival order to the order in which the client sent the actual messages. Note also the client sends the messages to a set number of streams without regard to how many were actually set up. It is possible that one or more of the sends may fail if the peer negotiates the number of streams downward.

This code has the potential to fail if the send or receive windows are too small. If the peer's receive window is too small, it is possible that the client will block. Since the client does not read any information until all of its sends are complete, the server could also potentially block while waiting for the client to finish reading the responses the server already sent. The result of such a scenario would be a deadlock of the two endpoints. This code is not meant to be scalable, but instead to illustrate streams and head-of-line blocking in a simple, straightforward manner.

Figure 10.7 sctp_strcliecho.

sctp/sctp_strcliecho.c

 1 #include     "unp . h"

 2 #define SCTP_MAXLINE     800

 3 void
 4 sctpstr_cli_echoall (FILE *fp, int sock_fd, struct sockaddr *to,
 5                      socklen_t tolen)
 6 {
 7     struct sockaddr_in peeraddr;
 8     struct sctp_sndrcvinfo sri;
 9     char    sendline [SCTP_MAXLINE], recvline [SCTP_MAXLINE];
10     socklen_t len;
11     int     rd_sz, i, strsz;
12     int     msg_flags;

13     bzero(sendline, sizeof (sendline));
14     bzero(&sri, sizeof (sri));
15     while (fgets (sendline, SCTP_MAXLINE - 9, fp) ! = NULL) {
16         strsz = strlen (sendline);
17         if (sendline [strsz - 1] == '\n') {
18             sendline [strsz - 1] = '\0';
19             strsz--;
20         }
21         for (i = 0; i < SERV_MAX_SCTP_STRM; i++) {
22             snprintf (sendline + strsz, sizeof (sendline) - strsz,
23                       ".msg. %d", i) ;
24             Sctp_sendmsg (sock_fd, sendline, sizeof (sendline),
25                           to, tolen, 0, 0, i, 0, 0) ;
26         }
27         for (i = 0; i < SERV_MAX_SCTP_STRM; i++) {
28             len = sizeof (peeraddr) ;
29             rd_sz = Sctp_recvmsg (sock_fd, recvline, sizeof (recvline),
30                                   (SA *) &peeraddr, &len, &sri, &msg_flags);
31             printf ("From str:%d seq:%d (assoc: 0X%X) :",
32                     sri . sinfo_stream, sri . sinfo_ssn,
33                     (u_int) sri . sinfo_assoc_id) ;
34             printf ("%.*s\n", rd_sz, recvline) ;
35         }
36     }
37 }

Read back echoed messages and display

27鈥?5 We now block, reading all the response messages from our server and displaying each as we did before. After the last message is read, the client loops back for more user input.

Running the Code

We execute the client and server on two separate FreeBSD machines, separated by a configurable router, as illustrated in Figure 10.8. The router can be configured to insert both delay and loss. We execute the program first with no loss inserted by the router.

Figure 10.8. SCTP client/server lab.

graphics/10fig08.gif

We start the server with an additional argument of "0", forcing the server to not increment the stream number on its replies.

Next, we start the client, passing it the address of the echo server and an additional argument so that it will send a message to each stream.


freebsd4% sctpclient01 10.1.4.1 echo
Echoing messages to all streams
Hello
From str:0 seq:0 (assoc:0xc99e15a0):Hello.msg.0
From str:1 seq:0 (assoc:0xc99e15a0):Hello.msg.1
From str:2 seq:1 (assoc:0xc99e15a0):Hello.msg.2
From str:3 seq:0 (assoc:0xc99e15a0):Hello.msg.3
From str:4 seq:0 (assoc:0xc99e15a0):Hello.msg.4
From str:5 seq:0 (assoc:0xc99e15a0):Hello.msg.5
From str:6 seq:0 (assoc:0xc99e15a0):Hello.msg.6
From str:7 seq:0 (assoc:0xc99e15a0):Hello.msg.7
From str:8 seq:0 (assoc:0xc99e15a0):Hello.msg.8
From str:9 seq:0 (assoc:0xc99e15a0):Hello.msg.9
^D
freebsd4%

With no loss, the client sees the responses arrive back in the order in which the client sent them. We now change the parameters of our router to lose 10% of all packets traveling in both directions and restart our client.


freebsd4% sctpclient01 10.1.4.1 echo
Echoing messages to all streams
Hello
From str:0 seq:0 (assoc:0xc99e15a0):Hello.msg.0
From str:2 seq:0 (assoc:0xc99e15a0):Hello.msg.2
From str:3 seq:0 (assoc:0xc99e15a0):Hello.msg.3
From str:5 seq:0 (assoc:0xc99e15a0):Hello.msg.5
From str:1 seq:0 (assoc:0xc99e15a0):Hello.msg.1
From str:8 seq:0 (assoc:0xc99e15a0):Hello.msg.8
From str:4 seq:0 (assoc:0xc99e15a0):Hello.msg.4
From str:7 seq:0 (assoc:0xc99e15a0):Hello.msg.7
From str:9 seq:0 (assoc:0xc99e15a0):Hello.msg.9
From str:6 seq:0 (assoc:0xc99e15a0):Hello.msg.6
^D
freebsd4%

We can verify that the messages within a stream are properly being held for reordering by having the client send two messages to each stream. We also modify the client to add a suffix to its message number to help us identify each message duplicate. The modifications to the server are shown in Figure 10.9.

Figure 10.9 sctp_strcliecho modifications.

sctp/sctp_strcliecho2.c

21          for (i = 0; i < SERV_MAX_SCTP_STRM; i++) {
22              snprintf (sendline + strsz, sizeof (sendline) - strsz,
23                        ".msg.%d 1", i);
24              Sctp_sendmsg (sock_fd, sendline, sizeof (sendline),
25                            to, tolen, 0, 0, i, 0, 0);
26              snprintf (sendline + strsz, sizeof (sendline) - strsz,
27                        ".msg.%d 2", i);
28              Sctp_sendmsg (sock_fd, sendline, sizeof (sendline),
29                            to, tolen, 0, 0, i, 0, 0);
30          }
31          for (i = 0; i < SERV_MAX_SCTP_STRM * 2; i++) {
32              len = sizeof (peeraddr);
Add additional message number and send

22鈥?5 The client adds an additional message number, "1", to help us track which message is being sent. Then the client sends the message using the sctp_sendmsg function.

Change message number and send it again

26鈥?9 The client now changes the number from "1" to "2" and sends this updated message to the same stream.

Read messages and display

31 Here the code requires only one small change: We double the number of messages the client expects to receive back from the echo server.

Running the Modified Code

We start our server and modified client, as before, and obtain the following output from the client:


freebsd4% sctpclient01 10.1.4.1 echo
Echoing messages to all streams
Hello
From str:0 seq:0 (assoc:0xc99e15a0):Hello.msg.0 1
From str:0 seq:1 (assoc:0xc99e15a0):Hello.msg.0 2
From str:1 seq:0 (assoc:0xc99e15a0):Hello.msg.1 1
From str:4 seq:0 (assoc:0xc99e15a0):Hello.msg.4 1
From str:5 seq:0 (assoc:0xc99e15a0):Hello.msg.5 1
From str:7 seq:0 (assoc:0xc99e15a0):Hello.msg.7 1
From str:8 seq:0 (assoc:0xc99e15a0):Hello.msg.8 1
From str:9 seq:0 (assoc:0xc99e15a0):Hello.msg.9 1
From str:3 seq:0 (assoc:0xc99e15a0):Hello.msg.3 1
From str:3 seq:1 (assoc:0xc99e15a0):Hello.msg.3 2
From str:1 seq:1 (assoc:0xc99e15a0):Hello.msg.1 2
From str:5 seq:1 (assoc:0xc99e15a0):Hello.msg.5 2
From str:2 seq:0 (assoc:0xc99e15a0):Hello.msg.2 1
From str:6 seq:0 (assoc:0xc99e15a0):Hello.msg.6 1
From str:6 seq:1 (assoc:0xc99e15a0):Hello.msg.6 2
From str:2 seq:1 (assoc:0xc99e15a0):Hello.msg.2 2
From str:7 seq:1 (assoc:0xc99e15a0):Hello.msg.7 2
From str:8 seq:1 (assoc:0xc99e15a0):Hello.msg.8 2
From str:9 seq:1 (assoc:0xc99e15a0):Hello.msg.9 2
From str:4 seq:1 (assoc:0xc99e15a0):Hello.msg.4 2
^D
freebsd4%

As we can see from the output, messages are lost, and yet only the messages in a particular stream are delayed. The other streams do not have their data delayed. SCTP streams can be a powerful mechanism to escape head-of-line blocking yet preserve order within a set of related messages.

[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)