Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

22.6 Binding Interface Addresses

One common use for our get_ifi_info function is with UDP applications that need to monitor all interfaces on a host to know when a datagram arrives, and on which interface it arrives. This allows the receiving program to know the destination address of the UDP datagram, since that address is what determines the socket to which a datagram is delivered, even if the host does not support the IP_RECVDSTADDR socket option.

Recall our discussion at the end of Section 22.2. If the host employs the common weak end system model, the destination IP address may differ from the IP address of the receiving interface. In this case, all we can determine is the destination address of the datagram, which does not need to be an address assigned to the receiving interface. To determine the receiving interface requires either the IP_RECVIF or IPV6_PKTINFO socket option.

Figure 22.15 is the first part of a simple example of this technique with a UDP server that binds all the unicast addresses, all the broadcast addresses, and finally the wildcard address.

Call get_ifi_info, to obtain interface information

11鈥?2 get_ifi_info, obtains all the IPv4 addresses, including aliases, for all interfaces. The program then loops through each returned ifi_info structure.

Create UDP socket and bind unicast address

13鈥?0 A UDP socket is created and the unicast address is bound to it. We also set the SO_REUSEADDR socket option, as we are binding the same port (SERV_PORT) for all IP addresses.

Figure 22.15 First part of UDP server that binds all addresses.

advio/udpserv03.c

 1 #include    "unpifi.h"

 2 void    mydg_echo(int, SA *, socklen_t, SA *);

 3 int
 4 main(int argc, char **argv)
 5 {
 6     int     sockfd;
 7     const int on = 1;
 8     pid_t   pid;
 9     struct ifi_info *ifi, *ifihead;
10     struct sockaddr_in *sa, cliaddr, wildaddr;

11     for (ifihead = ifi = Get_ifi_info(AF_INET, 1);
12          ifi != NULL; ifi = ifi->ifi_next) {

13             /* bind unicast address */
14         sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

15         Setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

16         sa = (struct sockaddr_in *) ifi->ifi_addr;
17         sa->sin_family = AF_INET;
18         sa->sin_port = htons(SERV_PORT);
19         Bind(sockfd, (SA *) sa, sizeof(*sa));
20         printf("bound %s\n", Sock_ntop((SA *) sa, sizeof(*sa)));

21         if ( (pid = Fork()) == 0) {  /* child */
22             mydg_echo(sockfd, (SA *) &cliaddr, sizeof(cliaddr), (SA *) sa);
23             exit(0);            /* never executed */
24         }

Not all implementations require that this socket option be set. Berkeley-derived implementations, for example, do not require the option and allow a new bind of an already bound port if the new IP address being bound: (i) is not the wildcard, and (ii) differs from all the IP addresses that are already bound to the port.

fork child for this address

21鈥?4 A child is forked and the function mydg_echo is called for the child. This function waits for any datagram to arrive on this socket and echoes it back to the sender.

Figure 22.16 shows the next part of the main function, which handles broadcast addresses.

Bind broadcast address

25鈥?2 If the interface supports broadcasting, a UDP socket is created and the broadcast address is bound to it. This time, we allow the bind to fail with an error of EADDRINUSE because if an interface has multiple addresses (aliases) on the same subnet, then each of the different unicast addresses will have the same broadcast address. We showed an example of this following Figure 17.6. In this scenario, we expect only the first bind to succeed.

Figure 22.16 Second part of UDP server that binds all addresses.

advio/udpserv03.c

25     if (ifi->ifi_flags & IFF_BROADCAST) {
26             /* try to bind broadcast address */
27         sockfd = Socket(AF_INET, SOCK_DGRAM, 0);
28         Setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

29         sa = (struct sockaddr_in *) ifi->ifi_brdaddr;
30         sa->sin_family = AF_INET;
31         sa->sin_port = htons(SERV_PORT);
32         if (bind(sockfd, (SA *) sa, sizeof(*sa)) < 0) {
33             if (errno == EADDRINUSE) {
34                 printf("EADDRINUSE: %s\n",
35                        Sock_ntop((SA *) sa, sizeof(*sa)));
36                 Close(sockfd);
37                 continue;
38             } else
39                 err_sys("bind error for %s",
40                         Sock_ntop((SA *) sa, sizeof(*sa)));
41         }
42         printf("bound %s\n", Sock_ntop((SA *) sa, sizeof(*sa)));

43         if ( (pid = Fork()) == 0) {  /* child */
44             mydg_echo(sockfd, (SA *) &cliaddr, sizeof(cliaddr),
45                       (SA *) sa);
46             exit(0);        /* never executed */
47         }
48     }
49 }

fork child

43鈥?7 A child is spawned and it calls the function mydg_echo.

The final part of the main function is shown in Figure 22.17. This code binds the wildcard address to handle any destination addresses except the unicast and broadcast addresses we have already bound. The only datagrams that should arrive on this socket should be those destined to the limited broadcast address (255.255.255.255).

Create socket and bind wildcard address

50鈥?2 A UDP socket is created, the SO_REUSEADDR socket option is set, and the wildcard IP address is bound. A child is spawned, which calls the mydg_echo function.

main function terminates

63 The main function terminates, and the server continues executing all the children that were spawned.

Figure 22.17 Final part of UDP server that binds all addresses.

advio/udpserv03.c

50         /* bind wildcard address */
51     sockfd = Socket(AF_INET, SOCK_DGRAM, 0);
52     Setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

53     bzero(&wildaddr, sizeof(wildaddr));
54     wildaddr.sin_family = AF_INET;
55     wildaddr.sin_addr.s_addr = htonl(INADDR_ANY);
56     wildaddr.sin_port = htons(SERV_PORT);
57     Bind(sockfd, (SA *) &wildaddr, sizeof(wildaddr));
58     printf("bound %s\n", Sock_ntop((SA *) &wildaddr, sizeof(wildaddr)));

59     if ( (pid = Fork()) == 0) {  /* child */
60         mydg_echo(sockfd, (SA *) &cliaddr, sizeof(cliaddr), (SA *) sa);
61         exit(0);                /* never executed */
62     }
63     exit(0);
64 }

The function mydg_echo, which is executed by all the children, is shown in Figure 22.18.

Figure 22.18 mydg_echo function.

advio/udpserv03.c

65 void
66 mydg_echo(int sockfd, SA *pcliaddr, socklen_t clilen, SA *myaddr)
67 {
68     int     n;
69     char    mesg[MAXLINE];
70     socklen_t len;

71     for ( ; ; ) {
72         len = clilen;
73         n = Recvfrom(sockfd, mesg, MAXLINE, 0, pcliaddr, &len);
74         printf("child %d, datagram from %s", getpid(),
75                Sock_ntop(pcliaddr, len));
76         printf(", to %s\n", Sock_ntop(myaddr, clilen));

77         Sendto(sockfd, mesg, n, 0, pcliaddr, len);
78     }
79 }

New argument

65鈥?6 The fourth argument to this function is the IP address that was bound to the socket. This socket should receive only datagrams destined to that IP address. If the IP address is the wildcard, then the socket should receive only datagrams that are not matched by some other socket bound to the same port.

Read datagram and echo reply

71鈥?8 The datagram is read with recvfrom and sent back to the client with sendto.

This function also prints the client's IP address and the IP address that was bound to the socket.

We now run this program on our host solaris after establishing an alias address for the hme0 Ethernet interface. The alias address is host number 200 on 10.0.0/24.

solaris % udpserv03

 

bound 127.0.0.1:9877

loopback interface

bound 10.0.0.200:9877

unicast address of hme0:1 interface

bound 10.0.0.255:9877

broadcast address of hme0:1 interface

bound 192.168.1.20:9877

unicast address of hme0 interface

bound 192.168.1.255:9877

broadcast address of hme0 interface

bound 0.0.0.0.9877

wildcard

We can check that all these sockets are bound to the indicated IP address and port using netstat.

solaris % netstat -na | grep 9877

 

127.0.0.1.9877

Idle

10.0.0.200.9877

Idle

*.9877

Idle

192.129.100.100.9877

Idle

*.9877

Idle

*.9877

Idle

We should note that our design of one child process per socket is for simplicity and other designs are possible. For example, to reduce the number of processes, the program could manage all the descriptors itself using select, never calling fork. The problem with this design is the added code complexity. While it is easy to use select for all the descriptors, we would have to maintain some type of mapping of each descriptor to its bound IP address (probably an array of structures) so we could print the destination IP address when a datagram was read from a socket. It is often simpler to use a single process or a single thread for one operation or descriptor instead of having a single process multiplex many different operations or descriptors.

[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)