Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

9.2 Interface Models

There are two types of SCTP sockets: a one-to-one socket and a one-to-many socket. A one-to-one socket corresponds to exactly one SCTP association. (Recall from Section 2.5 that an SCTP association is a connection between two systems, but may involve more than two IP addresses due to multihoming.) This mapping is similar to the relationship between a TCP socket and a TCP connection. With a one-to-many socket, several SCTP associations can be active on a given socket simultaneously. This mapping is similar to the manner in which a UDP socket bound to a particular port can receive interleaved datagrams from several remote UDP endpoints that are all simultaneously sending data.

When deciding which style of interface to use, the application needs to consider several factors, including:

  • What type of server is being written, iterative or concurrent?

  • How many socket descriptors does the server wish to manage?

  • Is it important to optimize the association setup to enable data on the third (and possibly fourth) packet of the four-way handshake?

  • How much connection state does the application wish to maintain?

    When the sockets API for SCTP was under development, different terminology was used for the two styles of sockets, and readers may sometimes encounter these older terms in documentation or source code. The original term for the one-to-one socket was a "TCP-style" socket, and the original term for a one-to-many socket was a "UDP-style" socket.

    These style terms were later dropped because they tended to cause confusion by creating expectations that SCTP would behave more like TCP or UDP, depending on which style of socket was used. In fact, these terms referred to only one aspect of the differences between TCP and UDP sockets (i.e., whether a socket supports multiple concurrent transport-layer associations). The current terminology ("one-to-one" versus "one-to-many") focuses our attention on the key difference between the two socket styles. Finally, note that some writers use the term "many-to-one" instead of "one-to-many"; the terms are interchangeable.

The One-to-One Style

The one-to-one style was developed to ease the porting of existing TCP applications to SCTP. It provides nearly an identical model to that described in Chapter 4. There are some differences one should be aware of, especially when porting existing TCP applications to SCTP using this style.

  1. Any socket options must be converted to the SCTP equivalent. Two commonly found options are TCP_NODELAY and TCP_MAXSEG. These can be easily mapped to SCTP_NODELAY and SCTP_MAXSEG.

  2. SCTP preserves message boundaries; thus, application-layer message boundaries are not required. For example, an application protocol based on TCP might do a write() system call to write a two-byte message length field, x, followed by a write() system call that writes x bytes of data. However, if this is done with SCTP, the receiving SCTP will receive two separate messages (i.e., the read call will return twice: once with a two-byte message, and then again with an x byte message).

  3. Some TCP applications use a half-close to signal the end of input to the other side. To port such applications to SCTP, the application-layer protocol will need to be rewritten so that the application signals the end of input in the application data stream.

  4. The send function can be used in the normal fashion. For the sendto and sendmsg functions, any address information included is treated as an override of the primary destination address (see Section 2.8).

A typical user of the one-to-one style will follow the timeline shown in Figure 9.1. When the server is started, it opens a socket, binds to an address, and waits for a client connection with the accept system call. Sometime later, the client is started, it opens a socket, and initiates an association with the server. We assume the client sends a request to the server, the server processes the request, and the server sends back a reply to the client. This cycle continues until the client initiates a shutdown of the association. This action closes the association, whereupon the server either exits or waits for a new association. As can be seen by comparison to a typical TCP exchange, an SCTP one-to-one socket exchange proceeds in a fashion similar to that shown in Figure 4.1.

Figure 9.1. Socket functions for SCTP one-to-one style.

graphics/09fig01.gif

A one-to-one-style SCTP socket is an IP socket (family AF_INET or AF_INET6), with type SOCK_STREAM and protocol IPPROTO_SCTP.

The One-to-Many Style

The one-to-many style provides an application writer the ability to write a server without managing a large number of socket descriptors. A single socket descriptor will represent multiple associations, much the same way that a UDP socket can receive messages from multiple clients. An association identifier is used to identify a single association on a one-to-many-style socket. This association identifier is a value of type sctp_assoc_t; it is normally an integer. It is an opaque value; an application should not use an association identifier that it has not previously been given by the kernel. Users of the one-to-many style should keep the following issues in mind:

  1. When the client closes the association, the server side will automatically close as well, thus removing any state for the association inside the kernel.

  2. Using the one-to-many style is the only method that can be used to cause data to be piggybacked on the third or fourth packet of the four-way handshake (see Exercise 9.3).

  3. Any sendto, sendmsg, or sctp_sendmsg to an address for which an association does not yet exist will cause an active open to be attempted, thus creating (if successful) a new association with that address. This behavior occurs even if the application doing the send has called the listen function to request a passive open.

  4. The user must use the sendto, sendmsg, or sctp_sendmsg functions, and may not use the send or write function. (If the sctp_peeloff function is used to create a one-to-one-style socket, send or write may be used on it.)

  5. Anytime one of the send functions is called, the primary destination address that was chosen by the system at association initiation time (Section 2.8) will be used unless the MSG_ADDR_OVER flag is set by the caller in a supplied sctp_sndrcvinfo structure. To supply this, the caller needs to use the sendmsg function with ancillary data, or the sctp_sendmsg function.

  6. Association events (one of a number of SCTP notifications discussed in Section 9.14) may be enabled, so if an application does not wish to receive these events, it should disable them explicitly using the SCTP_EVENTS socket option. By default, the only event that is enabled is the sctp_data_io_event, which provides ancillary data to the recvmsg and sctp_recvmsg call. This default setting applies to both the one-to-one and one-to-many style.

    When the SCTP sockets API was first developed, the one-to-many-style interface was defined to have the association notification turned on by default as well. Later versions of the API document have since disabled all notifications except the sctp_data_io_event for both the one-to-one- and one-to-many-style interface. However not all implementations may have this behavior. It is always good practice for an application writer to explicitly disable (or enable) the notifications that are unwanted (or desired). This explicit approach assures the developer that the expected behavior will result no matter which OS the code is ported to.

A typical one-to-many style timeline is depicted in Figure 9.2. First, the server is started, creates a socket, binds to an address, calls listen to enable client associations, and calls sctp_recvmsg, which blocks waiting for the first message to arrive. A client opens a socket and calls sctp_sendto, which implicitly sets up the association and piggybacks the data request to the server on the third packet of the four-way handshake. The server receives the request, and processes and sends back a reply. The client receives the reply and closes the socket, thus closing the association. The server loops back to receive the next message.

Figure 9.2. Socket functions for SCTP one-to-many style.

graphics/09fig02.gif

This example shows an iterative server, where (possibly interleaved) messages from many associations (i.e., many clients) can be processed by a single thread of control. With SCTP, a one-to-many socket can also be used in conjunction with the sctp_peeloff function (see Section 9.12) to allow the iterative and concurrent server models to be combined as follows:

  1. The sctp_peeloff function can be used to peel off a particular association (for example, a long-running session) from a one-to-many socket into its own one-to-one socket.

  2. The one-to-one socket of the extracted association can then be dispatched to its own thread or forked process (as in the concurrent model).

  3. Meanwhile, the main thread continues to handle messages from any remaining associations in an iterative fashion on the original socket.

A one-to-many-style SCTP socket is an IP socket (family AF_INET or AF_INET6) with type SOCK_SEQPACKET and protocol IPPROTO_SCTP.

[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)