Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

25.3 UDP Echo Server Using SIGIO

We now provide an example similar to the right side of Figure 25.1: a UDP server that uses the SIGIO signal to receive arriving datagrams. This example also illustrates the use of POSIX reliable signals.

We do not change the client at all from Figure 8.7 and 8.8, and the server main function does not change from Figure 8.3. The only changes that we make are to the dg_echo function, which we show in the next four figures. Figure 25.2 shows the global declarations.

Figure 25.2 Global declarations.

sigio/dgecho01.c

 1 #include    "unp.h"

 2 static int sockfd;

 3 #define QSIZE     8             /* size of input queue */
 4 #define MAXDG  4096             /* max datagram size */

 5 typedef struct {
 6     void   *dg_data;            /* ptr to actual datagram */
 7     size_t  dg_len;             /* length of datagram */
 8     struct sockaddr *dg_sa;     /* ptr to sockaddr{} w/client's address */
 9     socklen_t dg_salen;         /* length of sockaddr{} */
10 } DG;
11 static DG dg[QSIZE];            /* queue of datagrams to process */
12 static long cntread[QSIZE + 1]; /* diagnostic counter */

13 static int iget;                /* next one for main loop to process */
14 static int iput;                /* next one for signal handler to read into */
15 static int nqueue;              /* # on queue for main loop to process */
16 static socklen_t clilen;        /* max length of sockaddr{} */

17 static void sig_io(int);
18 static void sig_hup(int);

Queue of received datagrams

3鈥?2 The SIGIO signal handler places arriving datagrams onto a queue. This queue is an array of DG structures that we treat as a circular buffer. Each structure contains a pointer to the received datagram, its length, a pointer to a socket address structure containing the protocol address of the client, and the size of the protocol address. QSIZE of these structures are allocated, and we will see in Figure 25.4 that the dg_echo function calls malloc to allocate memory for all the datagrams and socket address structures. We also allocate a diagnostic counter, cntread, that we will examine shortly. Figure 25.3 shows the array of structures, assuming the first entry points to a 150-byte datagram and the length of its associated socket address structure is 16.

Figure 25.3. Data structures used to hold received datagrams and their socket address structures.

graphics/25fig03.gif

Array indexes

13鈥?5 iget is the index of the next array entry for the main loop to process, and iput is the index of the next array entry for the signal handler to store into. nqueue is the total number of datagrams on the queue for the main loop to process.

Figure 25.4 shows the main server loop, the dg_echo function.

Figure 25.4 dg_echo function: server main processing loop.

sigio/dgecho01.c

19 void
20 dg_echo(int sockfd_arg, SA *pcliaddr, socklen_t clilen_arg)
21 {
22     int     i;
23     const int on = 1;
24     sigset_t zeromask, newmask, oldmask;

25     sockfd = sockfd_arg;
26     clilen = clilen_arg;

27     for (i = 0; i < QSIZE; i++) {    /* init queue of buffers */
28         dg[i].dg_data = Malloc(MAXDG);
29         dg[i].dg_sa = Malloc(clilen);
30         dg[i].dg_salen = clilen;
31     }
32     iget = iput = nqueue = 0;

33     Signal(SIGHUP, sig_hup);
34     Signal(SIGIO, sig_io);
35     Fcntl(sockfd, F_SETOWN, getpid());
36     Ioctl(sockfd, FIOASYNC, &on);
37     Ioctl(sockfd, FIONBIO, &on);

38     Sigemptyset(&zeromask);     /* init three signal sets */
39     Sigemptyset(&oldmask);
40     Sigemptyset(&newmask);
41     Sigaddset(&newmask, SIGIO); /* signal we want to block */

42     Sigprocmask(SIG_BLOCK, &newmask, &oldmask);
43     for ( ; ; ) {
44         while (nqueue == 0)
45             sigsuspend(&zeromask); /* wait for datagram to process */

46             /* unblock SIGIO */
47         Sigprocmask(SIG_SETMASK, &oldmask, NULL);

48         Sendto(sockfd, dg[iget].dg_data, dg[iget].dg_len, 0,
49                dg[iget].dg_sa, dg[iget].dg_salen);

50         if (++iget >= QSIZE)
51             iget = 0;

52             /* block SIGIO */
53         Sigprocmask(SIG_BLOCK, &newmask, &oldmask);
54         nqueue--;
55     }
56 }

Initialize queue of received datagrams

27鈥?2 The socket descriptor is saved in a global variable since the signal handler needs it. The queue of received datagrams is initialized.

Establish signal handlers and set socket flags

33鈥?7 Signal handlers are established for SIGHUP (which we use for diagnostic purposes) and SIGIO. The socket owner is set using fcntl and the signal-driven and non-blocking I/O flags are set using ioctl.

We mentioned earlier that the O_ASYNC flag with fcntl is the POSIX way to specify signal-driven I/O, but since most systems do not yet support it, we use ioctl instead. While most systems do support the O_NONBLOCK flag to set nonblocking, we show the ioctl method here.

Initialize signal sets

38鈥?1 Three signal sets are initialized: zeromask (which never changes), oldmask (which contains the old signal mask when we block SIGIO), and newmask. sigaddset turns on the bit corresponding to SIGIO in newmask.

Block SIGIO and wait for something to do

42鈥?5 sigprocmask stores the current signal mask of the process in oldmask and then logically ORs newmask into the current signal mask. This blocks SIGIO and returns the current signal mask. We then enter the for loop and test the nqueue counter. As long as this counter is 0, there is nothing to do and we can call sigsuspend. This POSIX function saves the current signal mask internally and then sets the current signal mask to the argument (zeromask). Since zeromask is an empty signal set, this enables all signals. sigsuspend returns after a signal has been caught and the signal handler returns. (It is an unusual function because it always returns an error, EINTR.) Before returning, sigsuspend always sets the signal mask to its value when the function was called, which in this case is the value of newmask, so we are guaranteed that when sigsuspend returns, SIGIO is blocked. That is why we can test the counter nqueue, knowing that while we are testing it, a SIGIO signal cannot be delivered.

Consider what would happen if SIGIO was not blocked while we tested the variable nqueue, which is shared between the main loop and the signal handler. We could test nqueue and find it 0, but immediately after this test, the signal is delivered and nqueue gets set to 1. We then call sigsuspend and go to sleep, effectively missing the signal. We are never awakened from the call to sigsuspend unless another signal occurs. This is similar to the race condition we described in Section 20.5.

Unblock SIGIO and send reply

46鈥?1 We unblock SIGIO by calling sigprocmask to set the signal mask of the process to the value that was saved earlier (oldmask). The reply is then sent by sendto. The iget index is incremented, and if its value is the number of elements in the array, its value is set back to 0. We treat the array as a circular buffer. Notice that we do not need SIGIO blocked while modifying iget, because this index is used only by the main loop; it is never modified by the signal handler.

Block SIGIO

52鈥?4 SIGIO is blocked and the value of nqueue is decremented. We must block the signal while modifying this variable since it is shared between the main loop and the signal handler. Also, we need SIGIO blocked when we test nqueue at the top of the loop.

An alternate technique is to remove both calls to sigprocmask that are within the for loop, which avoids unblocking the signal and then blocking it later. The problem, however, is that this executes the entire loop with the signal blocked, which decreases the responsiveness of the signal handler. Datagrams should not get lost because of this change (assuming the socket receive buffer is large enough), but the delivery of the signal to the process will be delayed the entire time that the signal is blocked. One goal when coding applications that perform signal handling should be to block the signal for the minimum amount of time.

Figure 25.5 shows the SIGIO signal handler.

Figure 25.5 SIGIO handler.

sigio/dgecho01.c

57 static void
58 sig_io(int signo)
59 {
60     ssize_t len;
61     int     nread;
62     DG     *ptr;

63     for (nread = 0;;) {
64         if (nqueue >= QSIZE)
65             err_quit("receive overflow");

66         ptr = &dg[iput];
67         ptr->dg_salen = clilen;
68         len = recvfrom(sockfd, ptr->dg_data, MAXDG, 0,
69                        ptr->dg_sa, &ptr->dg_salen);
70         if (len < 0) {
71             if (errno == EWOULDBLOCK)
72                 break;          /* all done; no more queued to read */
73             else
74                 err_sys("recvfrom error");
75          }
76          ptr->dg_len = len;

77          nread++;
78          nqueue++;
79          if (++iput >= QSIZE)
80              iput = 0;

81     }
82     cntread[nread]++;            /* histogram of # datagrams read per signal */
83 }

The problem that we encounter when coding this signal handler is that POSIX signals are normally not queued. This means that, if we are in the signal handler, which guarantees that the signal is blocked, and the signal occurs two more times, the signal is delivered only one more time.

POSIX provides some real-time signals that are queued, but other signals such as SIGIO are normally not queued.

Consider the following scenario: A datagram arrives and the signal is delivered. The signal handler reads the datagram and places it onto the queue for the main loop. But while the signal handler is executing, two more datagrams arrive, causing the signal to be generated two more times. Since the signal is blocked, when the signal handler returns, it is called only one more time. The second time the signal handler executes, it reads the second datagram, but the third datagram is left on the socket receive queue. This third datagram will be read only if and when a fourth datagram arrives. When a fourth datagram arrives, it is the third datagram that is read and placed on the queue for the main loop, not the fourth one.

Because signals are not queued, the descriptor that is set for signal-driven I/O is normally set to nonblocking also. We then code our SIGIO handler to read in a loop, terminating only when the read returns EWOULDBLOCK.

Check for queue overflow

64鈥?5 If the queue is full, we terminate. There are other ways to handle this (e.g., additional buffers could be allocated), but for our simple example, we just terminate.

Read datagram

66鈥?6 recvfrom is called on the nonblocking socket. The array entry indexed by iput is where the datagram is stored. If there are no datagrams to read, break jumps out of the for loop.

Increment counters and index

77鈥?0 nread is a diagnostic counter of the number of datagrams read per signal. nqueue is the number of datagrams for the main loop to process.

82 Before the signal handler returns, it increments the counter corresponding to the number of datagrams read per signal. We print this array in Figure 25.6 when the SIGHUP signal is delivered as diagnostic information.

The final function (Figure 25.6) is the SIGHUP signal handler, which prints the cntread array. This counts the number of datagrams read per signal.

Figure 25.6 SIGHUP handler.

sigio/dgecho01.c

84 static void
85 sig_hup(int signo)
86 {
87     int     i;

88     for (i = 0; i <= QSIZE; i++)
89         printf("cntread[%d] = %ld\n", i, cntread[i]);
90 }

To illustrate that signals are not queued and that we must set the socket to nonblocking in addition to setting the signal-driven I/O flag, we will run this server with six clients simultaneously. Each client sends 3,645 lines for the server to echo, and each client is started from a shell script in the background so that all clients are started at about the same time. When all the clients have terminated, we send the SIGHUP signal to the server, causing it to print its cntread array.


     linux % udpserv01
     cntread[0] = 0
     cntread[1] = 15899
     cntread[2] = 2099
     cntread[3] = 515
     cntread[4] = 57
     cntread[5] = 0
     cntread[6] = 0
     cntread[7] = 0
     cntread[8] = 0

Most of the time, the signal handler reads only one datagram, but there are times when more than one is ready. The nonzero counter for cntread[0] is when the signal is generated while the signal handler is executing, but before the signal handler returns, it reads all pending datagrams. When the signal handler is called again, there are no datagrams left to read. Finally, we can verify that the weighted sum of the array elements (15899 x 1 + 2099 x 2 + 515 x 3 + 57 x 4 = 21870) equals 6 (the number of clients) times 3,645 lines per client.

[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)