Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

13.5 inetd Daemon

On a typical Unix system, there could be many servers in existence, just waiting for a client request to arrive. Examples are FTP, Telnet, Rlogin, TFTP, and so on. With systems before 4.3BSD, each of these services had a process associated with it. This process was started at boot-time from the file /etc/rc, and each process did nearly identical startup tasks: create a socket, bind the server's well-known port to the socket, wait for a connection (if TCP) or a datagram (if UDP), and then fork. The child process serviced the client and the parent waited for the next client request. There are two problems with this model:

  1. All these daemons contained nearly identical startup code, first with respect to socket creation, and also with respect to becoming a daemon process (similar to our daemon_init function).

  2. Each daemon took a slot in the process table, but each daemon was asleep most of the time.

The 4.3BSD release simplified this by providing an Internet superserver: the inetd daemon. This daemon can be used by servers that use either TCP or UDP. It does not handle other protocols, such as Unix domain sockets. This daemon fixes the two problems just mentioned:

  1. It simplifies writing daemon processes since most of the startup details are handled by inetd. This obviates the need for each server to call our daemon_init function.

  2. It allows a single process (inetd) to be waiting for incoming client requests for multiple services, instead of one process for each service. This reduces the total number of processes in the system.

The inetd process establishes itself as a daemon using the techniques that we described with our daemon_init function. It then reads and processes its configuration file, typically /etc/inetd.conf. This file specifies the services that the superserver is to handle, and what to do when a service request arrives. Each line contains the fields shown in Figure 13.6.

Figure 13.6. Fields in inetd.conf file.

graphics/13fig06.gif

Some sample lines are


ftp     stream  tcp  nowait  root     /usr/bin/ftpd      ftpd -1
telnet  stream  tcp  nowait  root     /usr/bin/telnetd   telnetd
login   stream  tcp  nowait  root     /usr/bin/rlogind   rlogind -s
tftp    dgram   udp  wait    nobody   /usr/bin/tftpd     tftpd -s /tftpboot

The actual name of the server is always passed as the first argument to a program when it is execed.

This figure and the sample lines are just examples. Most vendors have added their own features to inetd. Examples are the ability to handle RPC servers, in addition to TCP and UDP servers, and the ability to handle protocols other than TCP and UDP. Also, the pathname to exec and the command-line arguments to the server obviously depend on the implementation.

The wait-flag field can be a bit confusing. In general, it specifies whether the daemon started by inetd intends to take over the listening socket associated with the service. UDP services don't have separate listening and accepting sockets, and are virtually always configured as wait. TCP services could be handled either way, at the discretion of the person writing the daemon, but nowait is most common.

The interaction of IPv6 with /etc/inetd.conf depends on the vendor and special attention to detail is required to get what you want. Some use a protocol of tcp6 or udp6 to indicate that an IPv6 socket should be created for a service. Some allow protocol values of tcp46 or udp46 indicate the daemon wants sockets that allow both IPv6 and IPv4 connections. These special protocol names do not typically appear in the /etc/protocols file.

A picture of what the inetd daemon does is shown in Figure 13.7.

Figure 13.7. Steps performed by inetd.

graphics/13fig07.gif

  1. On startup, it reads the /etc/inetd.conf file and creates a socket of the appropriate type (stream or datagram) for all the services specified in the file. The maximum number of servers that inetd can handle depends on the maximum number of descriptors that inetd can create. Each new socket is added to a descriptor set that will be used in a call to select.

  2. bind is called for the socket, specifying the port for the server and the wildcard IP address. This TCP or UDP port number is obtained by calling getservbyname with the service-name and protocol fields from the configuration file as arguments.

  3. For TCP sockets, listen is called so that incoming connection requests are accepted. This step is not done for datagram sockets.

  4. After all the sockets are created, select is called to wait for any of the sockets to become readable. Recall from Section 6.3 that a listening TCP socket becomes readable when a new connection is ready to be accepted and a UDP socket becomes readable when a datagram arrives. inetd spends most of its time blocked in this call to select, waiting for a socket to be readable.

  5. When select returns that a socket is readable, if the socket is a TCP socket and the nowait flag is given, accept is called to accept the new connection.

  6. The inetd daemon forks and the child process handles the service request. This is similar to a standard concurrent server (Section 4.8).

    The child closes all descriptors except the socket descriptor it is handling: the new connected socket returned by accept for a TCP server or the original UDP socket. The child calls dup2 three times, duplicating the socket onto descriptors 0, 1, and 2 (standard input, standard output, and standard error). The original socket descriptor is then closed. By doing this, the only descriptors that are open in the child are 0, 1, and 2. If the child reads from standard input, it is reading from the socket and anything it writes to standard output or standard error is written to the socket. The child calls getpwnam to get the password file entry for the login-name specified in the configuration file. If this field is not root, then the child becomes the specified user by executing the setgid and setuid function calls. (Since the inetd process is executing with a user ID of 0, the child process inherits this user ID across the fork, and is able to become any user that it chooses.)

    The child process now does an exec to execute the appropriate server-program to handle the request, passing the arguments specified in the configuration file.

  7. If the socket is a stream socket, the parent process must close the connected socket (like our standard concurrent server). The parent calls select again, waiting for the next socket to become readable.

If we look in more detail at the descriptor handling that is taking place, Figure 13.8 shows the descriptors in inetd when a new connection request arrives from an FTP client.

Figure 13.8. inetd descriptors when connection request arrives for TCP port 21.

graphics/13fig08.gif

The connection request is directed to TCP port 21, but a new connected socket is created by accept.

Figure 13.9 shows the descriptors in the child, after the call to fork, after the child has closed all the descriptors except the connected socket.

Figure 13.9. inetd descriptors in child.

graphics/13fig09.gif

The next step is for the child to duplicate the connected socket to descriptors 0, 1, and 2 and then close the connected socket. This gives us the descriptors shown in Figure 13.10.

Figure 13.10. inetd descriptors after dup2.

graphics/13fig10.gif

The child then calls exec. Recall from Section 4.7 that all descriptors normally remain open across an exec, so the real server that is execed uses any of the descriptors, 0, 1, or 2, to communicate with the client. These should be the only descriptors open in the server.

The scenario we have described handles the case where the configuration file specifies nowait for the server. This is typical for all TCP services and it means that inetd need not wait for its child to terminate before accepting another connection for that service. If another connection request arrives for the same service, it is returned to the parent process as soon as it calls select again. Steps 4, 5, and 6 listed earlier are executed again, and another child process handles this new request.

Specifying the wait flag for a datagram service changes the steps done by the parent process. This flag says that inetd must wait for its child to terminate before selecting on this socket again. The following changes occur:

  1. When fork returns in the parent, the parent saves the process ID of the child. This allows the parent to know when this specific child process terminates, by looking at the value returned by waitpid.

  2. The parent disables the socket from future selects by using the FD_CLR macro to turn off the bit in its descriptor set. This means that the child process takes over the socket until it terminates.

  3. When the child terminates, the parent is notified by a SIGCHLD signal, and the parent's signal handler obtains the process ID of the terminating child. It reenables select for the corresponding socket by turning on the bit in its descriptor set for this socket.

The reason that a datagram server must take over the socket until it terminates, preventing inetd from selecting on that socket for readability (awaiting another client datagram), is because there is only one socket for a datagram server, unlike a TCP server that has a listening socket and one connected socket per client. If inetd did not turn off readability for the datagram socket, and if the parent (inetd) executed before the child, then the datagram from the client would still be in the socket receive buffer, causing select to return readable again, causing inetd to fork another (unneeded) child. inetd must ignore the datagram socket until it knows that the child has read the datagram from the socket receive queue. The way that inetd knows when that child is finished with the socket is by receiving SIGCHLD, indicating that the child has terminated. We will show an example of this in Section 22.7.

The five standard Internet services that we described in Figure 2.18 are handled internally by inetd (see Exercise 13.2).

Since inetd is the process that calls accept for a TCP server, the actual server that is invoked by inetd normally calls getpeername to obtain the IP address and port number of the client. Recall Figure 4.18 where we showed that after a fork and an exec (which is what inetd does), the only way for the actual server to obtain the identify of the client is to call getpeername.

inetd is normally not used for high-volume servers, notably mail and Web servers. sendmail, for example, is normally run as a standard concurrent server, as we described in Section 4.8. In this mode, the process control cost for each client connection is just a fork, while the cost for a TCP server invoked by inetd is a fork and an exec. Web servers use a variety of techniques to minimize the process control overhead for each client connection, as we will discuss in Chapter 30.

It is now common to find an extended Internet services daemon, called xinetd, on Linux and other systems. xinetd provides the same basic function as inetd, but also includes a long list of other interesting features. Those features include options for logging, accepting or rejecting connections based on the client's address, configuring services one-per-file instead of a single monolithic configuration, and many more. It is not described further here since the basic superserver idea behind them both is the same.

[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)