Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

19.4 Creating a Static Security Association (SA)

The most straightforward method of adding an SA is to send an SADB_ADD message with all parameters filled in, presumably manually specified. Although manual specification of keying material does not lead easily to key changes, which are crucial to avoid cryptanalysis attacks, it is quite easy to configure: Alice and Bob agree on a key and algorithms to use out-of-band, and proceed to use them. We show the steps needed to create and send an SADB_ADD message.

The SADB_ADD message requires three extensions: SA, address and key. It can also optionally contain other extensions: lifetime, identity, and sensitivity. We describe the required extensions first. The SA extension is described by the sadb_sa structure, shown in Figure 19.6.

Figure 19.6 SA Extension.
struct sadb_sa {
  u_int16_t sadb_sa_len;      /* length of extension / 8 */
  u_int16_t sadb_sa_exttype;  /* SADB_EXT_SA */
  u_int32_t sadb_sa_spi;      /* Security Parameters Index (SPI) */
  u_int8_t  sadb_sa_replay;   /* replay window size, or zero */
  u_int8_t  sadb_sa_state;    /* SA state, see Figure 19.7 */
  u_int8_t  sadb_sa_auth;     /* authentication algorithm, see Figure 19.8 */
  u_int8_t  sadb_sa_encrypt;  /* encryption algorithm, see Figure 19.8 */
  u_int32_t sadb_sa_flags;    /* bitmask of flags */
};
Figure 19.7. Possible states for SAs.

graphics/19fig07.gif

Figure 19.8. Authentication and Encryption algorithms.

graphics/19fig08.gif

The sadb_sa_spi field contains the Security Parameters Index, or SPI. This value, combined with the destination address and protocol in use (e.g., IPsec AH), uniquely identifies an SA. When receiving a packet, this value is used to look up the SA for that packet; when sending a packet, this value is inserted into the packet for the other end to use. It has no other meaning, so these values can be allocated sequentially, randomly, or using any method the destination system prefers. The sadb_sa_reply field specifies the window size for replay protection. Since static keying prevents replay protection, we will set this to zero. The sadb_sa_state field varies during the life cycle of a dynamically created SA, using the values in Figure 19.7. However, manually created SAs spend all their time in the SADB_SASTATE_MATURE state. We will see the other states in Section 19.5.

The sadb_sa_auth and sadb_sa_encrypt fields specify the authentication and encryption algorithms for this SA. Possible values for these fields are listed in Figure 19.8. There is only one flag value currently defined for the sadb_sa_flags field, SADB_SAFLAGS_PFS. This flag requests perfect forward security, that is, the value of this key must not be dependent on any previous keys or some master key. This flag value is used when requesting keys from a key management application and is not used when adding static associations.

The next required extensions for an SADB_ADD command are the addresses. Source and destination addresses, specified with SADB_EXT_ADDRESS_SRC and SADB_EXT_ADDRESS_DST, respectively, are required. A proxy address, specified with SADB_EXT_ADDRESS_PROXY, is optional. For more details on proxy addresses, see RFC 2367 [McDonald, Metz, and Phan 1998]. Addresses are specified using a sadb_address extension, shown in Figure 19.9. The sadb_address_exttype field determines what type of address this extension is supplying. The sadb_address_proto field specifies the IP protocol to be matched for this SA, or 0 to match all protocols. The sadb_address_prefixlen field describes the prefix of the address that is significant. This permits an SA to match more than one address. A sockaddr of the appropriate family (e.g., sockaddr_in, sockaddr_in6) follows the sadb_address structure. The port number in this sockaddr is significant only if the sadb_address_proto specifies a protocol that supports port numbers (e.g., IPPROTO_TCP).

Figure 19.9 Address extension.
struct sadb_address {
  u_int16_t sadb_address_len;        /* length of extension + address / 8 */
  u_int16_t sadb_address_exttype;    /* SADB_EXT_ADDRESS_{SRC,DST,PROXY} */
  u_int8_t  sadb_address_proto;      /* IP protocol, or 0 for all */
  u_int8_t  sadb_address_prefixlen;  /* # significant bits in address */
  u_int16_t sadb_address_reserved;   /* reserved for extension */
};
                                     /* followed by appropriate sockaddr */

The final required extensions for the SADB_ADD message are the authentication and encryption keys, specified with the SADB_EXT_KEY_AUTH and SADB_EXT_KEY_ ENCRYPT extensions, which are represented by a sadb_key structure (Figure 19.10). The key extension is very straightforward; the sadb_key_exttype member defines whether it is an authentication or encryption key, the sadb_key_bits member specifies the number of bits in the key, and the key itself follows the sadb_key structure.

Figure 19.10 Key extension.
struct sadb_key {
  u_int16_t sadb_key_len;       /* length of extension + key / 8 */
  u_int16_t sadb_key_exttype;   /* SADB_EXT_KEY_{AUTH, ENCRYPT} */
  u_int16_t sadb_key_bits;      /* # bits in key */
  u_int16_t sadb_key_reserved;  /* reserved for extension */
};
                                /* followed by key data */
Figure 19.11 Program to issue SADB_ADD command on key management socket.

key/add.c

 33 void
 34 sadb_add(struct sockaddr *src, struct sockaddr *dst, int type, int alg,
 35          int spi, int keybits, unsigned char *keydata)
 36 {
 37     int     s;
 38     char    buf[4096], *p;     /* XXX */
 39     struct sadb_msg *msg;
 40     struct sadb_sa *saext;
 41     struct sadb_address *addrext;
 42     struct sadb_key *keyext;
 43     int     len;
 44     int     mypid;

 45     s = Socket(PF_KEY, SOCK_RAW, PF_KEY_V2);

 46     mypid = getpid();

 47     /* Build and write SADB_ADD request */
 48     bzero(&buf, sizeof(buf));
 49     p = buf;
 50     msg = (struct sadb_msg *) p;
 51     msg->sadb_msg_version = PF_KEY_V2;
 52     msg->sadb_msg_type = SADB_ADD;
 53     msg->sadb_msg_satype = type;
 54     msg->sadb_msg_pid = getpid();
 55     len = sizeof(*msg);
 56     p += sizeof(*msg);

 57     saext = (struct sadb_sa *) p;
 58     saext->sadb_sa_len = sizeof(*saext) / 8;
 59     saext->sadb_sa_exttype = SADB_EXT_SA;
 60     saext->sadb_sa_spi = htonl(spi);
 61     saext->sadb_sa_replay = 0; /* no replay protection with static keys */
 62     saext->sadb_sa_state = SADB_SASTATE_MATURE;
 63     saext->sadb_sa_auth = alg;
 64     saext->sadb_sa_encrypt = SADB_EALG_NONE;
 65     saext->sadb_sa_flags = 0;
 66     len += saext->sadb_sa_len * 8;
 67     p += saext->sadb_sa_len * 8;

 68     addrext = (struct sadb_address *) p;
 69     addrext->sadb_address_len = (sizeof(*addrext) + salen(src) + 7) / 8;
 70     addrext->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
 71     addrext->sadb_address_proto = 0;     /* any protocol */
 72     addrext->sadb_address_prefixlen = prefix_all(src);
 73     addrext->sadb_address_reserved = 0;
 74     memcpy(addrext + 1, src, salen(src));
 75     len += addrext->sadb_address_len * 8;
 76     p += addrext->sadb_address_len * 8;

 77     addrext = (struct sadb_address *) p;
 78     addrext->sadb_address_len = (sizeof(*addrext) + salen(dst) + 7) / 8;
 79     addrext->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
 80     addrext->sadb_address_proto = 0;     /* any protocol */
 81     addrext->sadb_address_prefixlen = prefix_all(dst);
 82     addrext->sadb_address_reserved = 0;
 83     memcpy(addrext + 1, dst, salen(dst));
 84     len += addrext->sadb_address_len * 8;
 85     p += addrext->sadb_address_len * 8;

 86     keyext = (struct sadb_key *) p;
 87     /* "+7" handles alignment requirements */
 88     keyext->sadb_key_len = (sizeof(*keyext) + (keybits / 8) + 7) / 8;
 89     keyext->sadb_key_exttype = SADB_EXT_KEY_AUTH;
 90     keyext->sadb_key_bits = keybits;
 91     keyext->sadb_key_reserved = 0;
 92     memcpy(keyext + 1, keydata, keybits / 8);
 93     len += keyext->sadb_key_len * 8;
 94     p += keyext->sadb_key_len * 8;

 95     msg->sadb_msg_len = len / 8;
 96     printf("Sending add message:\n");
 97     print_sadb_msg(buf, len);
 98     Write(s, buf, len);

 99     printf("\nReply returned:\n");
100     /* Read and print SADB_ADD reply, discarding any others */
101     for ( ; ; ) {
102         int     msglen;
103         struct sadb_msg *msgp;

104         msglen = Read(s, &buf, sizeof(buf));
105         msgp = (struct sadb_msg *) &buf;
106         if (msgp->sadb_msg_pid == mypid && msgp->sadb_msg_type == SADB_ADD) {
107             print_sadb_msg(msgp, msglen);
108             break;
109         }
110     }
111     close(s);
112 }

We show our program to add a static SADB entry in Figure 19.11.

Open PF_KEY socket and save PID

55鈥?6 As before, we open a PF_KEY socket and save our PID for later.

Build common message header

47鈥?6 We build the common message header for the SADB_ADD message. We don't set the sadb_msg_len element until just before writing the message since it must reflect the entire length of the message. The len variable keeps a running length of the message, and the p pointer always points to the first unused byte in the buffer.

Append SA extension

57鈥?7 Next, we add the required SA extension (Figure 19.6). The sadb_sa_spi field must be in network byte order, so we call htonl on the host order value that was passed to the function. We turn off replay protection and set the SA state (Figure 19.7) to SADB_SASTATE_MATURE. We set the authentication algorithm to the algorithm value specified on the command line, and specify no encryption with SADB_EALG_NONE.

Append source address

68鈥?6 We add the source address to the message as an SADB_EXT_ADDRESS_SRC extension. We set the protocol to 0, meaning that this association applies to all protocols. We set the prefix length to the appropriate length for the IP version, that is, 32 bits for IPv4 and 128 bits for IPv6. The calculation of the length field adds 7 before dividing by 8, which ensures that the length reflects the padding required to pad out to a 64-bit boundary as required for all PF_KEY extensions. The sockaddr is copied after the extension header.

Append destination address

77鈥?5 The destination address is added as an SADB_EXT_ADDRESS_DST extension in exactly the same way as the source address.

Append key

86鈥?4 We add the authentication key to the message as an SADB_EXT_KEY_AUTH extension. We calculate the length field the same way as for the addresses, to add the required padding for the variable-length key. We set the number of bits and copy the key data to follow the extension header.

Write message

95鈥?8 We print out the message with our print_sadb_msg function, and write it to the socket.

Read reply

99鈥?11 We read messages from the socket until we receive one that is addressed to our PID and is an SADB_ADD message. We then print that message with the print_sadb_msg function and exit.

Example

We run our program to send an SADB_ADD message for traffic between 127.0.0.1 and 127.0.0.1; in other words, on the local system.


macosx % add 127.0.0.1 127.0.0.1 HMAC-SHA-1-96 160 \ 
                               0123456789abcdef0123456789abcdef01234567
Sending add message:
SADB Message Add, errno 0, satype IPsec AH, seq 0, pid 6246
 SA: SPI=39030 Replay Window=0 State=Mature
  Authentication Algorithm: HMAC-SHA-1
  Encryption Algorithm: None
 Source address:     127.0.0.1/32
 Dest address:     127.0.0.1/32
 Authentication key, 160 bits: 0x0123456789abcdef0123456789abcdef01234567

Reply returned:
SADB Message Add, errno 0, satype IPsec AH, seq 0, pid 6246
 SA: SPI=39030 Replay Window=0 State=Mature
  Authentication Algorithm: HMAC-SHA-1
  Encryption Algorithm: None
 Source address:     127.0.0.1/32
 Dest address:     127.0.0.1/32

Note that the reply echoes the request without the key. This is because the reply is sent to all PF_KEY sockets, but different PF_KEY sockets may belong to sockets in different protection domains, and keying data should not cross protection domains. After adding the SA to the database, we ping 127.0.0.1 to cause the SA to be used, then dump the database to see what was added.


macosx % dump
Sending dump message:
SADB Message Dump, errno 0, satype Unspecified, seq 0, pid 6283

Messages returned:
SADB Message Dump, errno 0, satype IPsec AH, seq 0, pid 6283
 SA: SPI=39030 Replay Window=0 State=Mature
  Authentication Algorithm: HMAC-SHA-1
  Encryption Algorithm: None
 [unknown extension 19]
 Current lifetime:
  36 allocations, 0 bytes
  added at Thu Jun  5 21:01:31 2003, first used at Thu Jun 5 21:15:07 2003
 Source address:   127.0.0.1/128 (IP proto 255)
 Dest address:   127.0.0.1/128 (IP proto 255)
 Authentication key, 160 bits: 0x0123456789abcdef0123456789abcdef01234567

We see from this dump that the kernel has changed our IP protocol zero to 255. This is an artifact of this implementation, not a general property of PF_KEY sockets. In addition, we see that the kernel changed the prefix length from 32 to 128. This appears to be a confusing issue between IPv4 and IPv6 within the kernel. The kernel returns an extension (numbered 19) that our dump program doesn't understand. Unknown extensions are skipped using the length field. A lifetime extension (Figure 19.12) is returned containing the current lifetime information of the SA.

Figure 19.12 Lifetime extension.
struct sadb_lifetime {
  u_int16_t sadb_lifetime_len;         /* length of extension / 8 */
  u_int16_t sadb_lifetime_exttype;     /* SADB_EXT_LIFETIME_{SOFT, HARD, CURRENT} */
  u_int32_t sadb_lifetime_allocations; /* # connections, endpoints, or flows */
  u_int64_t sadb_lifetime_bytes;       /* # bytes */
  u_int64_t sadb_lifetime_addtime;     /* time of creation, or time from
                                          creation to expiration */
  u_int64_t sadb_lifetime_usetime;     /* time first used, or time from
                                          first use to expiration */
};

There are three different lifetime extensions. The SADB_LIFETIME_SOFT and SADB_LIFETIME_HARD extensions specify soft and hard lifetimes for an SA, respectively. The kernel sends an SADB_EXPIRE message when the soft lifetime has been reached; the SA will not be used after its hard lifetime has been reached. The SADB_LIFETIME_CURRENT extension is returned in SADB_DUMP, SADB_EXPIRE, and SADB_GET responses to describe the values for the current association.

[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)