Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

21.7 mcast_join and Related Functions

Although the multicast socket options for IPv4 are similar to the multicast socket options for IPv6, there are enough differences that protocol-independent code using multicasting becomes complicated with lots of #ifdefs. A better solution is to hide the differences within the following eight functions:

#include "unp.h"

int mcast_join(int sockfd, const struct sockaddr *grp, socklen_t grplen, const char *ifname, u_int ifindex);

int mcast_leave(int sockfd, const struct sockaddr *grp, socklen_t grplen);

int mcast_block_source(int sockfd, const struct sockaddr *src, socklen_t srclen, const struct sockaddr *grp, socklen_t grplen);

int mcast_unblock_source(int sockfd, const struct sockaddr *src, socklen_t srclen, const struct sockaddr *grp, socklen_t grplen);

int mcast_join_source_group(int sockfd, const struct sockaddr *src, socklen_t srclen, const struct sockaddr *grp, socklen_t grplen, const char *ifname, u_int ifindex);

int mcast_leave_source_group(int sockfd, const struct sockaddr *src, socklen_t srclen, const struct sockaddr *grp, socklen_t grplen);

int mcast_set_if(int sockfd, const char *ifname, u_int ifindex);

int mcast_set_loop(int sockfd, int flag);

int mcast_set_ttl(int sockfd, int ttl);

All above return: 0 if OK, 鈥? on error

int mcast_get_if(int sockfd);

Returns: non-negative interface index if OK, 鈥? on error

int mcast_get_loop(int sockfd);

Returns: current loopback flag if OK, 鈥? on error

int mcast_get_ttl(int sockfd);

Returns: current TTL or hop limit if OK, 鈥? on error

mcast_join joins the any-source multicast group whose IP address is contained within the socket address structure pointed to by grp, and whose length is specified by grplen. We can specify the interface on which to join the group by either the interface name (a non-null ifname) or a nonzero interface index (ifindex). If neither is specified, the kernel chooses the interface on which the group is joined. Recall that with IPv6, the interface is specified to the socket option by its index. If a name is specified for an IPv6 socket, we call if_nametoindex to obtain the index. With the IPv4 socket option, the interface is specified by its unicast IP address. If a name is specified for an IPv4 socket, we call ioctl with a request of SIOCGIFADDR to obtain the unicast IP address for the interface. If an index is specified for an IPv4 socket, we first call if_indextoname to obtain the name and then process the name as just described.

An interface name, such as le0 or ether0, is normally the way users specify interfaces, and not with either the IP address or the index. tcpdump, for example, is one of the few programs that lets the user specify an interface, and its -i option takes an interface name as the argument.

mcast_leave leaves the multicast group whose IP address is contained within the socket address structure pointed to by grp. Note that mcast_leave does not take an interface specification; it always deletes the first matching membership. This simplifies the library API, but means that programs that require direct control of per-interface membership need to use the setsockopt API directly.

mcast_block_source blocks reception on the given socket of the source and group whose IP addresses are contained within the socket address structures pointed to by src and grp, respectively, and whose lengths are specified by srclen and grplen. mcast_join must have already been called on this socket for the given group.

mcast_unblock_source unblocks reception of traffic from the given source to the given group. The src, srclen, grp, and grplen arguments must be the same as a previous call to mcast_block_source.

mcast_join_source_group joins the source-specific group where the source and group IP addresses are contained within the socket address structures pointed to by src and grp, respectively, and whose lengths are specified by srclen and grplen. We can specify the interface on which to join the group by either the interface name (a non-null ifname) or a nonzero interface index (ifindex). If neither is specified, the kernel chooses the interface on which the group is joined.

mcast_leave_source_group leaves the source-specific multicast group whose source and group IP addresses are contained within the socket address structures pointed to by src and grp, respectively, and whose lengths are specified by srclen and grplen. As with mcast_leave, mcast_leave_source_group does not take an interface specification; it always deletes the first matching membership.

mcast_set_if sets the default interface index for outgoing multicast datagrams. If ifindex is greater than 0, then it specifies the interface index; otherwise, if ifname is nonnull, then it specifies the interface name. For IPv6, the name is mapped to an index using if_nametoindex. For IPv4, the mapping from either a name or an index into the interface's unicast IP address is done as described for mcast_join.

mcast_set_loop sets the loopback option to either 0 or 1, and mcast_set_ttl sets either the IPv4 TTL or the IPv6 hop limit. The three mcast_get_XXX functions return the corresponding value.

Example: mcast_join Function

Figure 21.10 shows the first third of our mcast_join function. This third shows how straightforward the protocol-independent API can be.

Handle index

9鈥?7 If the caller supplied an index, then we just use it directly. Otherwise, if the caller supplied an interface name, the index is obtained by calling if_nametoindex. Otherwise, the interface is set to 0, telling the kernel to choose the interface.

Copy address and call setsockopt

18鈥?2 The caller's socket address is copied directly into the request's group field. Recall that the group field is a sockaddr_storage, so it is big enough to handle any socket address type the system supports. However, to guard against buffer overruns caused by sloppy coding, we check the sockaddr size and return EINVAL if it is too large.

23鈥?4 setsockopt performs the join. The level argument to setsockopt is determined using the family of the group address and our family_to_level function. Some systems support a mismatch between level and the socket's address family, for instance, using IPPROTO_IP with MCAST_JOIN_GROUP, even with an AF_INET6 socket, but not all do, so we turn the address family into the appropriate level. We do not show this trivial function, but the source code is freely available (see the Preface).

Figure 21.10 Join a multicast group: IP version-independent.

lib/mcast_join.c

 1 #include    "unp.h"
 2 #include    <net/if.h>

 3 int
 4 mcast_join(int sockfd, const SA *grp, socklen_t grplen,
 5            const char *ifname, u_int ifindex)
 6 {
 7 #ifdef MCAST_JOIN_GROUP
 8     struct group_req req;
 9     if (ifindex > 0) {
10         req.gr_interface = ifindex;
11     } else if (ifname != NULL) {
12         if ( (req.gr_interface = if_nametoindex(ifname)) == 0) {
13             errno = ENXIO;      /* i/f name not found */
14             return (-1);
15         }
16     } else
17         req.gr_interface = 0;
18     if (grplen > sizeof(req.gr_group)) {
19         errno = EINVAL;
20         return -1;
21     }
22     memcpy(&req.gr_group, grp, grplen);
23     return (setsockopt(sockfd, family_to_level(grp->sa_family),
24                        MCAST_JOIN_GROUP, &req, sizeof(req)));
25 #else

Figure 21.11 shows the second third of mcast_join, which handles IPv4 sockets.

Handle index

33鈥?8 The IPv4 multicast address in the socket address structure is copied into an ip_mreq structure. If an index was specified, if_indextoname is called, storing the name into our ifreq structure. If this succeeds, we branch ahead to issue the ioctl.

Handle name

39鈥?6 The caller's name is copied into an ifreq structure, and an ioctl of SIOCGIFADDR returns the unicast address associated with this name. Upon success the IPv4 address is copied into the imr_interface member of the ip_mreq structure.

Specify default

47鈥?8 If an index was not specified and a name was not specified, the interface is set to the wildcard address, telling the kernel to choose the interface.

49鈥?0 setsockopt performs the join.

Figure 21.11 Join a multicast group: IPv4 socket.

lib/mcast_join.c

26   switch (grp->sa_family) {
27   case AF_INET:{
28           struct ip_mreq mreq;
29           struct ifreq ifreq;

30           memcpy(&mreq.imr_multiaddr,
31                  &((const struct sockaddr_in *) grp)->sin_addr,
32                  sizeof(struct in_addr));

33           if (ifindex > 0) {
34               if (if_indextoname(ifindex, ifreq.ifr_name) == NULL) {
35                   errno = ENXIO; /*  i/f index not found */
36                   return (-1);
37               }
38               goto doioctl;
39           } else if (ifname != NULL) {
40               strncpy(ifreq.ifr_name, ifname, IFNAMSIZ);
41             doioctl:
42               if (ioctl(sockfd, SIOCGIFADDR, &ifreq) < 0)
43                   return (-1);
44               memcpy(&mreq.imr_interface,
45                      &((struct sockaddr_in *) &ifreq.ifr_addr)->sin_addr,
46                      sizeof(struct in_addr));
47           } else
48               mreq.imr_interface.s_addr = htonl(INADDR_ANY);

49           return (setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
50                              &mreq, sizeof(mreq)));
51      }

The final portion of the function, which handles IPv6 sockets, is shown in Figure 21.12.

Copy address

55鈥?7 First the IPv6 multicast address is copied from the socket address structure into the ipv6_mreq structure.

Handle index, name, or default

58鈥?6 If an index was specified, it is stored in the ipv6mr_interface member; if a name was specified, the index is obtained by calling if_nametoindex; otherwise, the interface index is set to 0 for setsockopt, telling the kernel to choose the interface.

67鈥?8 The group is joined.

Figure 21.12 Join a multicast group: IPv6 socket.

lib/mcast_join.c

52 #ifdef  IPV6
53     case AF_INET6:{
54             struct ipv6_mreq mreq6;

55             memcpy(&mreq6.ipv6mr_multiaddr,
56                    &((const struct sockaddr_in6 *) grp) ->sin6_addr,
57                    sizeof(struct in6_addr));

58             if (ifindex > 0) {
59                 mreq6.ipv6mr_interface = ifindex;
60             } else if (ifname != NULL) {
61                 if ( (mreq6.ipv6mr_interface = if_nametoindex(ifname)) == 0) {
62                     errno = ENXIO;  /* i/f name not found */
63                     return (-1);
64                 }
65             } else
66                 mreq6.ipv6mr_interface = 0;

67             return (setsockopt(sockfd, IPPROTO_IPV6, IPV6_JOIN_GROUP,
68                                &mreq6, sizeof(mreq6)));
69         }
70 #endif

71     default:
72         errno = EAFNOSUPPORT;
73         return (-1);
74     }
75 #endif
76 }

Example: mcast_set_loop Function

Figure 21.13 shows our mcast_set_loop function.

Since the argument is a socket descriptor and not a socket address structure, we call our sockfd_to_family function to obtain the address family of the socket. The appropriate socket option is set.

We do not show the source code for all remaining mcast_XXX functions, but it is freely available (see the Preface).

Figure 21.13 Set the multicast loopback option.

lib/mcast_set_loop.c

 1 #include    "unp.h"

 2 int
 3 mcast_set_loop(int sockfd, int onoff)
 4 {
 5     switch (sockfd_to_family(sockfd)) {
 6     case AF_INET:{
 7             u_char  flag;

 8             flag = onoff;
 9             return (setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_LOOP,
10                                &flag, sizeof(flag)));
11         }

12 #ifdef  IPV6
13     case AF_INET6:{
14             u_int   flag;

15             flag = onoff;
16             return (setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_LOOP,
17                                &flag, sizeof(flag)));
18         }
19 #endif

20     default:
21         errno = EAFNOSUPPORT;
22         return (-1);
23     }
24 }
[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)