Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

22.2 Receiving Flags, Destination IP Address, and Interface Index

Historically, sendmsg and recvmsg have been used only to pass descriptors across Unix domain sockets (Section 15.7), and even this was rare. But the use of these two functions is increasing for two reasons:

  1. The msg_flags member, which was added to the msghdr structure with 4.3BSD Reno, returns flags to the application. We summarized these flags in Figure 14.7.

  2. Ancillary data is being used to pass more and more information between the application and the kernel. We will see in Chapter 27 that IPv6 continues this trend.

As an example of recvmsg, we will write a function named recvfrom_flags, which is similar to recvfrom but also returns the following:

  • The returned msg_flags value

  • The destination address of the received datagram (from the IP_RECVDSTADDR socket option)

  • The index of the interface on which the datagram was received (the IP_RECVIF socket option)

To return the last two items, we define the following structure in our unp.h header:


struct unp_in_pktinfo {
  struct in_addr  ipi_addr;     /* destination IPv4 address */
  int             ipi_ifindex;  /* received interface index */
};

We have purposely chosen the structure name and member names to be similar to the IPv6 in6_pktinfo structure that returns the same two items for an IPv6 socket (Section 22.8). Our recvfrom_flags function will take a pointer to an unp_in_pktinfo structure as an argument, and if this pointer is non-null, we will return the structure through the pointer.

A design problem with this structure is what to return if the IP_RECVDSTADDR information is not available (i.e., the implementation does not support the socket option). The interface index is easy to handle because a value of 0 can indicate that the index is not known. But all 32-bit values for an IP address are valid. What we have chosen is to return a value of all zeros (0.0.0.0) as the destination address when the actual value is not available. While this is a valid IP address, it is never allowed as the destination IP address (RFC 1122 [Braden 1989]); it is valid only as the source IP address when a host is bootstrapping and does not yet know its IP address.

Unfortunately, Berkeley-derived kernels accept IP datagrams destined to 0.0.0.0 (pp. 218鈥?19 of TCPv2). These are obsolete broadcasts generated by 4.2BSD-derived kernels.

We now show the first half of our recvfrom_flags function in Figure 22.1. This function is intended to be used with a UDP socket.

Figure 22.1 recvfrom_flags function: calls recvmsg.

advio/recvfromflags.c

 1 #include    "unp.h"
 2 #include    <sys/param.h>       /* ALIGN macro for CMSG_NXTHDR() macro */

 3 ssize_t
 4 recvfrom_flags(int fd, void *ptr, size_t nbytes, int *flagsp,
 5                SA *sa, socklen_t *salenptr, struct unp_in_pktinfo *pktp)
 6 {
 7     struct msghdr msg;
 8     struct iovec iov[1];
 9     ssize_t n;

10 #ifdef  HAVE_MSGHDR_MSG_CONTROL
11     struct cmsghdr *cmptr;
12     union {
13         struct cmsghdr cm;
14         char    control[CMSG_SPACE(sizeof(struct in_addr)) +
15                         CMSG_SPACE(sizeof(struct unp_in_pktinfo))];
16     } control_un;

17     msg.msg_control = control_un.control;
18     msg.msg_controllen = sizeof(control_un.control);
19     msg.msg_flags = 0;
20 #else
21     bzero(&msg, sizeof(msg));   /* make certain msg_accrightslen = 0 */
22 #endif

23     msg.msg_name = sa;
24     msg.msg_namelen = *salenptr;
25     iov[0].iov_base = ptr;
26     iov[0].iov_len = nbytes;
27     msg.msg_iov = iov;
28     msg.msg_iovlen = 1;

29     if ( (n = recvmsg(fd, &msg, *flagsp)) < 0)
30         return (n);

31     *salenptr = msg.msg_namelen;    /* pass back results */
32     if (pktp)
33         bzero(pktp, sizeof(struct unp_in_pktinfo)); /* 0.0.0.0, i/f = 0 */

Include files

1鈥? The CMSG_NXTHDR macro requires the <sys/param.h> header.

Function arguments

3鈥? The function arguments are similar to recvfrom, except the fourth argument is now a pointer to an integer flag (so that we can return the flags returned by recvmsg) and the seventh argument is new: It is a pointer to an unp_in_pktinfo structure that will contain the destination IPv4 address of the received datagram and the interface index on which the datagram was received.

Implemenation differences

10鈥?2 When dealing with the msghdr structure and the various MSG_xxx constants, we encounter lots of differences between various implementations. Our way of handling these differences is to use C's conditional inclusion feature (#ifdef). If the implementation supports the msg_control member, space is allocated to hold the values returned by both the IP_RECVDSTADDR and IP_RECVIF socket options, and the appropriate members are initialized.

Fill in msghdr structure and call recvmsg

23鈥?3 A msghdr structure is filled in and recvmsg is called. The values of the msg_namelen and msg_flags members must be passed back to the caller; they are value-result arguments. We also initialize the caller's unp_in_pktinfo structure, setting the IP address to 0.0.0.0 and the interface index to 0.

Figure 22.2 shows the second half of our function.

34鈥?7 If the implementation does not support the msg_control member, we just set the returned flags to 0 and return. The remainder of the function handles the msg_control information.

Return if no control information

38鈥?1 We return the msg_flags value and then return to the caller if: (i) there is no control information; (ii) the control information was truncated; or (iii) the caller does not want an unp_in_pktinfo structure returned.

Process ancillary data

42鈥?3 We process any number of ancillary data objects using the CMSG_FIRSTHDR and CMSG_NXTHDR macros.

Process IP_RECVDSTADDR

44鈥?1 If the destination IP address was returned as control information (Figure 14.9), it is returned to the caller.

Process IP_RECVIF

52鈥?9 If the index of the received interface was returned as control information, it is returned to the caller. Figure 22.3 shows the contents of the ancillary data object that is returned.

Figure 22.2 recvfrom_flags function: returns flags and destination address.

advio/recvfromflags.c

34 #ifndef HAVE_MSGHDR_MSG_CONTROL
35     *flagsp = 0;                /* pass back results */
36     return (n);
37 #else

38     *flagsp = msg.msg_flags;    /* pass back results */
39     if (msg.msg_controllen < sizeof(struct cmsghdr) ||
40         (msg.msg_flags & MSG_CTRUNC) || pktp == NULL)
41         return (n);

42     for (cmptr = CMSG_FIRSTHDR(&msg); cmptr != NULL;
43          cmptr = CMSG_NXTHDR(&msg, cmptr)) {

44 #ifdef  IP_RECVDSTADDR
45         if (cmptr->cmsg_level == IPPROTO_IP &&
46             cmptr->cmsg_type == IP_RECVDSTADDR) {

47             memcpy(&pktp->ipi_addr, CMSG_DATA(cmptr),
48                    sizeof(struct in_addr));
49             continue;
50         }
51 #endif

52 #ifdef  IP_RECVIF
53         if (cmptr->cmsg_level == IPPROTO_IP && cmptr->cmsg_type == IP_RECVIF) {
54             struct sockaddr_dl *sdl;

55             sdl = (struct sockaddr_dl *) CMSG_DATA(cmptr);
56             pktp->ipi_ifindex = sdl->sdl_index;
57             continue;
58         }
59 #endif
60         err_quit("unknown ancillary data, len = %d, level = %d, type = %d",
61                  cmptr->cmsg_len, cmptr->cmsg_level, cmptr->cmsg_type);
62     }
63     return (n);
64 #endif  /* HAVE_MSGHDR_MSG_CONTROL */
65 }
Figure 22.3. Ancillary data object returned for IP_RECVIF.

graphics/22fig03.gif

Recall the datalink socket address structure in Figure 18.1. The data returned in the ancillary data object is one of these structures, but the three lengths are 0 (name length, address length, and selector length). Therefore, there is no need for any of the data that follows these lengths, so the size of the structure should be 8 bytes, not the 20 that we show in Figure 18.1. The information we return is the interface index.

Example: Print Destination IP Address and Datagram-Truncated Flag

To test our function, we modify our dg_echo function (Figure 8.4) to call recvfrom_flags instead of recvfrom. We show this new version of dg_echo in Figure 22.4.

Change MAXLINE

2鈥? We remove the existing definition of MAXLINE that occurs in our unp.h header and redefine it to be 20. We do this to see what happens when we receive a UDP datagram that is larger than the buffer that we pass to the input function (recvmsg in this case).

Set IP_RECVDSTADDR and IP_RECVIF socket options

14鈥?1 If the IP_RECVDSTADDR socket option is defined, it is turned on. Similarly, the IP_RECVIF socket option is turned on.

Figure 22.4 dg_echo function that calls our recvfrom_flags function.

advio/dgechoaddr.c

 1 #include    "unpifi.h"

 2 #undef  MAXLINE
 3 #define MAXLINE 20              /* to see datagram truncation */

 4 void
 5 dg_echo(int sockfd, SA *pcliaddr, socklen_t clilen)
 6 {
 7     int     flags;
 8     const int on = 1;
 9     socklen_t len;
10     ssize_t n;
11     char    mesg[MAXLINE], str[INET6_ADDRSTRLEN], ifname[IFNAMSIZ];
12     struct in_addr in_zero;
13     struct unp_in_pktinfo pktinfo;

14 #ifdef  IP_RECVDSTADDR
15     if (setsockopt(sockfd, IPPROTO_IP, IP_RECVDSTADDR, &on, sizeof(on)) < 0)
16         err_ret("setsockopt of IP_RECVDSTADDR");
17 #endif
18 #ifdef  IP_RECVIF
19     if (setsockopt(sockfd, IPPROTO_IP, IP_RECVIF, &on, sizeof(on)) < 0)
20         err_ret("setsockopt of IP_RECVIF");
21 #endif
22     bzero(&in_zero, sizeof(struct in_addr));     /* all 0 IPv4 address */

23     for ( ; ; ) {
24         len = clilen;
25         flags = 0;
26         n = Recvfrom_flags(sockfd, mesg, MAXLINE, &flags,
27                            pcliaddr, &len, &pktinfo);
28         printf("%d-byte datagram from %s", n, Sock_ntop(pcliaddr, len));
29         if (memcmp(&pktinfo.ipi_addr, &in_zero, sizeof(in_zero)) != 0)
30             printf(", to %s", Inet_ntop(AF_INET, &pktinfo.ipi_addr,
31                                         str, sizeof(str)));
32         if (pktinfo.ipi_ifindex > 0)
33             printf(", recv i/f = %s",
34                    If_indextoname(pktinfo.ipi_ifindex, ifname));
35 #ifdef  MSG_TRUNC
36         if (flags & MSG_TRUNC)
37             printf(" (datagram truncated)");
38 #endif
39 #ifdef  MSG_CTRUNC
40         if (flags & MSG_CTRUNC)
41             printf(" (control info truncated)");
42 #endif
43 #ifdef  MSG_BCAST
44         if (flags & MSG_BCAST)
45             printf(" (broadcast)");
46 #endif
47 #ifdef  MSG_MCAST
48         if (flags & MSG_MCAST)
49             printf(" (multicast)");
50 #endif
51         printf("\n");

52         Sendto(sockfd, mesg, n, 0, pcliaddr, len);
53     }
54 }
Read datagram, print source IP address and port

24鈥?8 The datagram is read by calling recvfrom_flags. The source IP address and port of the server's reply are converted to presentation format by sock_ntop.

Print destination IP address

29鈥?1 If the returned IP address is not 0, it is converted to presentation format by inet_ntop and printed.

Print name of received interface

32鈥?4 If the returned interface index is not 0, its name is obtained by calling if_indextoname and it is printed.

Test various flags

35鈥?1 We test four additional flags and print a message if any are on.

[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)