Home
小杰的博客 Prev Page Prev Page
?
Main Page
Table of content
Copyright
Addison-Wesley Professional Computing Series
Foreword
Preface
Introduction
Changes from the Second Edition
Using This Book
Source Code and Errata Availability
Acknowledgments
Part 1: Introduction and TCP/IP
Chapter 1. Introduction
1.1 Introduction
1.2 A Simple Daytime Client
1.3 Protocol Independence
1.4 Error Handling: Wrapper Functions
1.5 A Simple Daytime Server
1.6 Roadmap to Client/Server Examples in the Text
1.7 OSI Model
1.8 BSD Networking History
1.9 Test Networks and Hosts
1.10 Unix Standards
1.11 64-Bit Architectures
1.12 Summary
Exercises
Chapter 2. The Transport Layer: TCP, UDP, and SCTP
2.1 Introduction
2.2 The Big Picture
2.3 User Datagram Protocol (UDP)
2.4 Transmission Control Protocol (TCP)
2.5 Stream Control Transmission Protocol (SCTP)
2.6 TCP Connection Establishment and Termination
2.7 TIME_WAIT State
2.8 SCTP Association Establishment and Termination
2.9 Port Numbers
2.10 TCP Port Numbers and Concurrent Servers
2.11 Buffer Sizes and Limitations
2.12 Standard Internet Services
2.13 Protocol Usage by Common Internet Applications
2.14 Summary
Exercises
Part 2: Elementary Sockets
Chapter 3. Sockets Introduction
3.1 Introduction
3.2 Socket Address Structures
3.3 Value-Result Arguments
3.4 Byte Ordering Functions
3.5 Byte Manipulation Functions
3.6 'inet_aton', 'inet_addr', and 'inet_ntoa' Functions
3.7 'inet_pton' and 'inet_ntop' Functions
3.8 'sock_ntop' and Related Functions
3.9 'readn', 'writen', and 'readline' Functions
3.10 Summary
Exercises
Chapter 4. Elementary TCP Sockets
4.1 Introduction
4.2 'socket' Function
4.3 'connect' Function
4.4 'bind' Function
4.5 'listen' Function
4.6 'accept' Function
4.7 'fork' and 'exec' Functions
4.8 Concurrent Servers
4.9 'close' Function
4.10 'getsockname' and 'getpeername' Functions
4.11 Summary
Exercises
Chapter 5. TCP Client/Server Example
5.1 Introduction
5.2 TCP Echo Server: 'main' Function
5.3 TCP Echo Server: 'str_echo' Function
5.4 TCP Echo Client: 'main' Function
5.5 TCP Echo Client: 'str_cli' Function
5.6 Normal Startup
5.7 Normal Termination
5.8 POSIX Signal Handling
5.9 Handling 'SIGCHLD' Signals
5.10 'wait' and 'waitpid' Functions
5.11 Connection Abort before 'accept' Returns
5.12 Termination of Server Process
5.13 'SIGPIPE' Signal
5.14 Crashing of Server Host
5.15 Crashing and Rebooting of Server Host
5.16 Shutdown of Server Host
5.17 Summary of TCP Example
5.18 Data Format
5.19 Summary
Exercises
Chapter 6. I/O Multiplexing: The 'select' and 'poll' Functions
6.1 Introduction
6.2 I/O Models
6.3 'select' Function
6.4 'str_cli' Function (Revisited)
6.5 Batch Input and Buffering
6.6 'shutdown' Function
6.7 'str_cli' Function (Revisited Again)
6.8 TCP Echo Server (Revisited)
6.9 'pselect' Function
6.10 'poll' Function
6.11 TCP Echo Server (Revisited Again)
6.12 Summary
Exercises
Chapter 7. Socket Options
7.1 Introduction
7.2 'getsockopt' and 'setsockopt' Functions
7.3 Checking if an Option Is Supported and Obtaining the Default
7.4 Socket States
7.5 Generic Socket Options
7.6 IPv4 Socket Options
7.7 ICMPv6 Socket Option
7.8 IPv6 Socket Options
7.9 TCP Socket Options
7.10 SCTP Socket Options
7.11 'fcntl' Function
7.12 Summary
Exercises
Chapter 8. Elementary UDP Sockets
8.1 Introduction
8.2 'recvfrom' and 'sendto' Functions
8.3 UDP Echo Server: 'main' Function
8.4 UDP Echo Server: 'dg_echo' Function
8.5 UDP Echo Client: 'main' Function
8.6 UDP Echo Client: 'dg_cli' Function
8.7 Lost Datagrams
8.8 Verifying Received Response
8.9 Server Not Running
8.10 Summary of UDP Example
8.11 'connect' Function with UDP
8.12 'dg_cli' Function (Revisited)
8.13 Lack of Flow Control with UDP
8.14 Determining Outgoing Interface with UDP
8.15 TCP and UDP Echo Server Using 'select'
8.16 Summary
Exercises
Chapter 9. Elementary SCTP Sockets
9.1 Introduction
9.2 Interface Models
9.3 'sctp_bindx' Function
9.4 'sctp_connectx' Function
9.5 'sctp_getpaddrs' Function
9.6 'sctp_freepaddrs' Function
9.7 'sctp_getladdrs' Function
9.8 'sctp_freeladdrs' Function
9.9 'sctp_sendmsg' Function
9.10 'sctp_recvmsg' Function
9.11 'sctp_opt_info' Function
9.12 'sctp_peeloff' Function
9.13 'shutdown' Function
9.14 Notifications
9.15 Summary
Exercises
Chapter 10. SCTP Client/Server Example
10.1 Introduction
10.2 SCTP One-to-Many-Style Streaming Echo Server: 'main' Function
10.3 SCTP One-to-Many-Style Streaming Echo Client: 'main' Function
10.4 SCTP Streaming Echo Client: 'str_cli' Function
10.5 Exploring Head-of-Line Blocking
10.6 Controlling the Number of Streams
10.7 Controlling Termination
10.8 Summary
Exercises
Chapter 11. Name and Address Conversions
11.1 Introduction
11.2 Domain Name System (DNS)
11.3 'gethostbyname' Function
11.4 'gethostbyaddr' Function
11.5 'getservbyname' and 'getservbyport' Functions
11.6 'getaddrinfo' Function
11.7 'gai_strerror' Function
11.8 'freeaddrinfo' Function
11.9 'getaddrinfo' Function: IPv6
11.10 'getaddrinfo' Function: Examples
11.11 'host_serv' Function
11.12 'tcp_connect' Function
11.13 'tcp_listen' Function
11.14 'udp_client' Function
11.15 'udp_connect' Function
11.16 'udp_server' Function
11.17 'getnameinfo' Function
11.18 Re-entrant Functions
11.19 'gethostbyname_r' and 'gethostbyaddr_r' Functions
11.20 Obsolete IPv6 Address Lookup Functions
11.21 Other Networking Information
11.22 Summary
Exercises
Part 3: Advanced Sockets
Chapter 12. IPv4 and IPv6 Interoperability
12.1 Introduction
12.2 IPv4 Client, IPv6 Server
12.3 IPv6 Client, IPv4 Server
12.4 IPv6 Address-Testing Macros
12.5 Source Code Portability
12.6 Summary
Exercises
Chapter 13. Daemon Processes and the 'inetd' Superserver
13.1 Introduction
13.2 'syslogd' Daemon
13.3 'syslog' Function
13.4 'daemon_init' Function
13.5 'inetd' Daemon
13.6 'daemon_inetd' Function
13.7 Summary
Exercises
Chapter 14. Advanced I/O Functions
14.1 Introduction
14.2 Socket Timeouts
14.3 'recv' and 'send' Functions
14.4 'readv' and 'writev' Functions
14.5 'recvmsg' and 'sendmsg' Functions
14.6 Ancillary Data
14.7 How Much Data Is Queued?
14.8 Sockets and Standard I/O
14.9 Advanced Polling
14.10 Summary
Exercises
Chapter 15. Unix Domain Protocols
15.1 Introduction
15.2 Unix Domain Socket Address Structure
15.3 'socketpair' Function
15.4 Socket Functions
15.5 Unix Domain Stream Client/Server
15.6 Unix Domain Datagram Client/Server
15.7 Passing Descriptors
15.8 Receiving Sender Credentials
15.9 Summary
Exercises
Chapter 16. Nonblocking I/O
16.1 Introduction
16.2 Nonblocking Reads and Writes: 'str_cli' Function (Revisited)
16.3 Nonblocking 'connect'
16.4 Nonblocking 'connect:' Daytime Client
16.5 Nonblocking 'connect:' Web Client
16.6 Nonblocking 'accept'
16.7 Summary
Exercises
Chapter 17. 'ioctl' Operations
17.1 Introduction
17.2 'ioctl' Function
17.3 Socket Operations
17.4 File Operations
17.5 Interface Configuration
17.6 'get_ifi_info' Function
17.7 Interface Operations
17.8 ARP Cache Operations
17.9 Routing Table Operations
17.10 Summary
Exercises
Chapter 18. Routing Sockets
18.1 Introduction
18.2 Datalink Socket Address Structure
18.3 Reading and Writing
18.4 'sysctl' Operations
18.5 'get_ifi_info' Function (Revisited)
18.6 Interface Name and Index Functions
18.7 Summary
Exercises
Chapter 19. Key Management Sockets
19.1 Introduction
19.2 Reading and Writing
19.3 Dumping the Security Association Database (SADB)
19.4 Creating a Static Security Association (SA)
19.5 Dynamically Maintaining SAs
19.6 Summary
Exercises
Chapter 20. Broadcasting
20.1 Introduction
20.2 Broadcast Addresses
20.3 Unicast versus Broadcast
20.4 'dg_cli' Function Using Broadcasting
20.5 Race Conditions
20.6 Summary
Exercises
Chapter 21. Multicasting
21.1 Introduction
21.2 Multicast Addresses
21.3 Multicasting versus Broadcasting on a LAN
21.4 Multicasting on a WAN
21.5 Source-Specific Multicast
21.6 Multicast Socket Options
21.7 'mcast_join' and Related Functions
21.8 'dg_cli' Function Using Multicasting
21.9 Receiving IP Multicast Infrastructure Session Announcements
21.10 Sending and Receiving
21.11 Simple Network Time Protocol (SNTP)
21.12 Summary
Exercises
Chapter 22. Advanced UDP Sockets
22.1 Introduction
22.2 Receiving Flags, Destination IP Address, and Interface Index
22.3 Datagram Truncation
22.4 When to Use UDP Instead of TCP
22.5 Adding Reliability to a UDP Application
22.6 Binding Interface Addresses
22.7 Concurrent UDP Servers
22.8 IPv6 Packet Information
22.9 IPv6 Path MTU Control
22.10 Summary
Exercises
Chapter 23. Advanced SCTP Sockets
23.1 Introduction
23.2 An Autoclosing One-to-Many-Style Server
23.3 Partial Delivery
23.4 Notifications
23.5 Unordered Data
23.6 Binding a Subset of Addresses
23.7 Determining Peer and Local Address Information
23.8 Finding an Association ID Given an IP Address
23.9 Heartbeating and Address Failure
23.10 Peeling Off an Association
23.11 Controlling Timing
23.12 When to Use SCTP Instead of TCP
23.13 Summary
Exercises
Chapter 24. Out-of-Band Data
24.1 Introduction
24.2 TCP Out-of-Band Data
24.3 'sockatmark' Function
24.4 TCP Out-of-Band Data Recap
24.5 Summary
Exercises
Chapter 25. Signal-Driven I/O
25.1 Introduction
25.2 Signal-Driven I/O for Sockets
25.3 UDP Echo Server Using 'SIGIO'
25.4 Summary
Exercises
Chapter 26. Threads
26.1 Introduction
26.2 Basic Thread Functions: Creation and Termination
26.3 'str_cli' Function Using Threads
26.4 TCP Echo Server Using Threads
26.5 Thread-Specific Data
26.6 Web Client and Simultaneous Connections (Continued)
26.7 Mutexes: Mutual Exclusion
26.8 Condition Variables
26.9 Web Client and Simultaneous Connections (Continued)
26.10 Summary
Exercises
Chapter 27. IP Options
27.1 Introduction
27.2 IPv4 Options
27.3 IPv4 Source Route Options
27.4 IPv6 Extension Headers
27.5 IPv6 Hop-by-Hop Options and Destination Options
27.6 IPv6 Routing Header
27.7 IPv6 Sticky Options
27.8 Historical IPv6 Advanced API
27.9 Summary
Exercises
Chapter 28. Raw Sockets
28.1 Introduction
28.2 Raw Socket Creation
28.3 Raw Socket Output
28.4 Raw Socket Input
28.5 'ping' Program
28.6 'traceroute' Program
28.7 An ICMP Message Daemon
28.8 Summary
Exercises
Chapter 29. Datalink Access
29.1 Introduction
29.2 BSD Packet Filter (BPF)
29.3 Datalink Provider Interface (DLPI)
29.4 Linux: 'SOCK_PACKET' and 'PF_PACKET'
29.5 'libpcap': Packet Capture Library
29.6 'libnet': Packet Creation and Injection Library
29.7 Examining the UDP Checksum Field
29.8 Summary
Exercises
Chapter 30. Client/Server Design Alternatives
30.1 Introduction
30.2 TCP Client Alternatives
30.3 TCP Test Client
30.4 TCP Iterative Server
30.5 TCP Concurrent Server, One Child per Client
30.6 TCP Preforked Server, No Locking Around 'accept'
30.7 TCP Preforked Server, File Locking Around 'accept'
30.8 TCP Preforked Server, Thread Locking Around 'accept'
30.9 TCP Preforked Server, Descriptor Passing
30.10 TCP Concurrent Server, One Thread per Client
30.11 TCP Prethreaded Server, per-Thread 'accept'
30.12 TCP Prethreaded Server, Main Thread 'accept'
30.13 Summary
Exercises
Chapter 31. Streams
31.1 Introduction
31.2 Overview
31.3 'getmsg' and 'putmsg' Functions
31.4 'getpmsg' and 'putpmsg' Functions
31.5 'ioctl' Function
31.6 Transport Provider Interface (TPI)
31.7 Summary
Exercises
Appendix A. IPv4, IPv6, ICMPv4, and ICMPv6
A.1 Introduction
A.2 IPv4 Header
A.3 IPv6 Header
A.4 IPv4 Addresses
A.5 IPv6 Addresses
A.6 Internet Control Message Protocols (ICMPv4 and ICMPv6)
Appendix B. Virtual Networks
B.1 Introduction
B.2 The MBone
B.3 The 6bone
B.4 IPv6 Transition: 6to4
Appendix C. Debugging Techniques
C.1 System Call Tracing
C.2 Standard Internet Services
C.3 'sock' Program
C.4 Small Test Programs
C.5 'tcpdump' Program
C.6 'netstat' Program
C.7 'lsof' Program
Appendix D. Miscellaneous Source Code
D.1 'unp.h' Header
D.2 'config.h' Header
D.3 Standard Error Functions
Appendix E. Solutions to Selected Exercises
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 20
Chapter 21
Chapter 22
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Bibliography
?
[ Team LiB ] Previous Section Next Section

14.5 recvmsg and sendmsg Functions

These two functions are the most general of all the I/O functions. Indeed, we could replace all calls to read, readv, recv, and recvfrom with calls to recvmsg. Similarly all calls to the various output functions could be replaced with calls to sendmsg.

#include <sys/socket.h>

ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

ssize_t sendmsg(int sockfd, struct msghdr *msg, int flags);

Both return: number of bytes read or written if OK, 鈥? on error

Both functions package most arguments into a msghdr structure.


struct msghdr {
  void         *msg_name;        /* protocol address */
  socklen_t     msg_namelen;     /* size of protocol address */
  struct iovec *msg_iov;         /* scatter/gather array */
  int           msg_iovlen;      /* # elements in msg_iov */
  void         *msg_control;     /* ancillary data (cmsghdr struct) */
  socklen_t     msg_controllen;  /* length of ancillary data */
  int           msg_flags;       /* flags returned by recvmsg() */
};

The msghdr structure that we show is the one specified in POSIX. Some systems still use an older msghdr structure that originated with 4.2BSD. This older structure does not have the msg_flags member, and the msg_control and msg_controllen members are named msg_accrights and msg_accrightslen. The newer form of the msghdr structure is often available using conditional compilation flags. The only form of ancillary data supported by the older structure is the passing of file descriptors (called access rights).

The msg_name and msg_namelen members are used when the socket is not connected (e.g., an unconnected UDP socket). They are similar to the fifth and sixth arguments to recvfrom and sendto: msg_name points to a socket address structure in which the caller stores the destination's protocol address for sendmsg, or in which recvmsg stores the sender's protocol address. If a protocol address does not need to be specified (e.g., a TCP socket or a connected UDP socket), msg_name should be set to a null pointer. msg_namelen is a value for sendmsg, but a value-result for recvmsg.

The msg_iov and msg_iovlen members specify the array of input or output buffers (the array of iovec structures), similar to the second and third arguments for readv or writev. The msg_control and msg_controllen members specify the location and size of the optional ancillary data. msg_controllen is a value-result argument for recvmsg. We will describe ancillary data in Section 14.6.

With recvmsg and sendmsg, we must distinguish between two flag variables: the flags argument, which is passed by value, and the msg_flags member of the msghdr structure, which is passed by reference (since the address of the structure is passed to the function).

  • The msg_flags member is used only by recvmsg. When recvmsg is called, the flags argument is copied into the msg_flags member (p. 502 of TCPv2) and this value is used by the kernel to drive its receive processing. This value is then updated based on the result of recvmsg.

  • The msg_flags member is ignored by sendmsg because this function uses the flags argument to drive its output processing. This means if we want to set the MSG_DONTWAIT flag in a call to sendmsg, we set the flags argument to this value; setting the msg_flags member to this value has no effect.

Figure 14.7 summarizes the flags that are examined by the kernel for both the input and output functions, as well as the msg_flags that might be returned by recvmsg. There is no column for sendmsg msg_flags because, as we mentioned, it is not used.

Figure 14.7. Summary of input and output flags by various I/O functions.

graphics/14fig07.gif

The first four flags are only examined and never returned; the next two are both examined and returned; and the last four are only returned. The following comments apply to the six flags returned by recvmsg:

MSG_BCAST

This flag is relatively new, supported by at least BSD, and is returned if the datagram was received as a link-layer broadcast or with a destination IP address that is a broadcast address. This flag is a better way of determining if a UDP datagram was sent to a broadcast address, compared to the IP_RECVDSTADDR socket option.

MSG_MCAST

This flag is also a fairly recent addition, supported by at least BSD, and is returned if the datagram was received as a link-layer multicast.

MSG_TRUNC

This flag is returned if the datagram was truncated; in other words, the kernel has more data to return than the process has allocated room for (the sum of all the iov_len members). We will discuss this more in Section 22.3.

MSG_CTRUNC

This flag is returned if the ancillary data was truncated; in other words, the kernel has more ancillary data to return than the process has allocated room for (msg_controllen).

MSG_EOR

This flag is cleared if the returned data does not end a logical record; the flag is turned on if the returned data ends a logical record. TCP does not use this flag since it is a byte-stream protocol.

MSG_OOB

This flag is never returned for TCP out-of-band data. This flag is returned by other protocol suites (e.g., the OSI protocols).

MSG_NOTIFICATON

This flag is returned for SCTP receivers to indicate that the message read is an event notification, not a data message.

Implementations might return some of the input flags in the msg_flags member, so we should examine only those flag values we are interested in (e.g., the last six in Figure 14.7).

Figure 14.8 shows a msghdr structure and the various information it points to. We assume in this figure that the process is about to call recvmsg for a UDP socket.

Figure 14.8. Data structures when recvmsg is called for a UDP socket.

graphics/14fig08.gif

Sixteen bytes are allocated for the protocol address and 20 bytes are allocated for the ancillary data. An array of three iovec structures is initialized: The first specifies a 100-byte buffer, the second a 60-byte buffer, and the third an 80-byte buffer. We also assume that the IP_RECVDSTADDR socket option has been set for the socket, to receive the destination IP address from the UDP datagram.

We next assume that a 170-byte UDP datagram arrives from 192.6.38.100, port 2000, destined for our UDP socket with a destination IP address of 206.168.112.96. Figure 14.9 shows all the information in the msghdr structure when recvmsg returns.

Figure 14.9. Update of Figure 14.8 when recvmsg returns.

graphics/14fig09.gif

The shaded fields are modified by recvmsg. The following items have changed from Figure 14.8 to Figure 14.9:

  • The buffer pointed to by msg_name has been filled in as an Internet socket address structure, containing the source IP address and source UDP port from the received datagram.

  • msg_namelen, a value-result argument, is updated with the amount of data stored in msg_name. Nothing changes since its value before the call was 16 and its value when recvmsg returns is also 16.

  • The first 100 bytes of data are stored in the first buffer; the next 60 bytes are stored in the second buffer; and the final 10 bytes are stored in the third buffer. The last 70 bytes of the final buffer are not modified. The return value of the recvmsg function is the size of the datagram, 170.

  • The buffer pointed to by msg_control is filled in as a cmsghdr structure. (We will say more about ancillary data in Section 14.6 and more about this particular socket option in Section 22.2.) The cmsg_len is 16; cmsg_level is IPPROTO_IP; cmsg_type is IP_RECVDSTADDR; and the next 4 bytes contain the destination IP address from the received UDP datagram. The final 4 bytes of the 20-byte buffer we supplied to hold the ancillary data are not modified.

  • The msg_controllen member is updated with the actual amount of ancillary data that was stored. It is also a value-result argument and its result on return is 16.

  • The msg_flags member is updated by recvmsg, but there are no flags to return to the process.

Figure 14.10 summarizes the differences among the five groups of I/O functions we described.

Figure 14.10. Comparison of the five groups of I/O functions.

graphics/14fig10.gif

[ Team LiB ] Previous Section Next Section
Converted from CHM to HTML with chm2web Pro 2.85 (unicode)